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Abstract. The problem of randomly distributed disks is considered in the dilute regime in a two-dimensional domain. Disks are

allowed to overlap and to form clusters which may be isolated or percolating. Depending on the number and size of the disks,

distribution functions are obtained for different size and bond configurations of clusters. A statistical geometrical approach is

taken to derive analytical probabilities for cluster formation in systems, where a maximum of four overlapping disks is considered.

Monte Carlo computations are carried out to verify our theoretical approach which is shown to be in close agreement with numerical

simulations.

INTRODUCTION

The present work was motivated by the analysis of Monte Carlo simulations of many-particle systems. Considering

N particles which interact via a potential U(r), leads in general to an O(N2) problem. If the potential function drops

down sufficiently fast, interactions can be truncated after a characteristic region ΩRc
with radius Rc. Since number of

particles within ΩRc
is bound, the problem can be reduced to O(N) [1]. In Monte Carlo simulations of many-particle

systems, trial moves are often conducted by single particle displacements [2]. Acceptance of trial moves is decided

upon an acceptance criterion, e.g. the Metropolis algorithm [2]. Including relaxation of all particles within ΩRc
({i})

implies configurational changes. Considering a subset of tagged particles {i} = {i1, . . . , in} with their proper regions

ΩRc
({i}), the evaluation of energies of tagged particles and independent relaxation could be performed independently if

ΩRc
(ik1

) ∩ΩRc
(ik2

) = ∅, ∀k1, k2 ∈ {1, n} and therefore would allow for parallel execution. However, usually the tagged

particles are chosen stochastically with a probability of pi = 1/N to avoid a bias in the computation and therefore

there is a non-vanishing probability for ΩRc
(ik1

) ∩ ΩRc
(ik2

) , ∅, ∃ k1, k2 ∈ {1, n}, which creates a causal dependence

between the energy computations. A possible solution to this problem is to discard completely the region which was

chosen latest and which causes an overlap or to perform a speculative execution and to consider both trial moves as

valid Monte Carlo attempts, if at least one of them is rejected in the energy criterion. Only if both trials would be

accepted, the overlapping region should have to be discarded completely.

The present work provides an analysis of such scenarios, where regions ΩRc
({i}) are distributed within a finite

domain. Probabilities are derived for the occurrence of clusters of different size and bonding configurations. Since

the overlap between regions is dependent on the central tagged particle and the size of the interaction range with

radius Rc, this problem can be reduced to the one of distribution of disks with radius Rc in a finite domain. Analysis

is provided for diluted systems, i.e. ones for which the cluster size can be considered to be bound for all practical

purposes. A complete analysis for an N-particle system would be practically impossible (e.g. for N = 10 the largest

cluster would allow for more than 107 non-isomorphic graphs [3]). We derive probabilities for the appearance of

clusters by geometric considerations, which are based on average disk configurations.

In the present article we restrict ourselves to periodic boundary conditions. Probabilities for 2-particle distances

in other boundary conditions are known as line picking problems [4], which are, however not easy to extend to larger

cluster configurations, i.e. N > 2. Overlap in disk systems has been considered in the context of percolation in random

systems and was first considered by Penrose [5] for Poisson processes and which considers probabilities for forming

bonds between nearby particles. Lateron this concept was further exploited to study percolation in penetrable disks,



spheres [6, 7] and ellipsoids [8]. Clusters are thereby computed as ensemble averages of random particle distributions.

Here we follow a somewhat different approach by considering probabilities of formation of penetrable disk

clusters in terms of graph realizations. Average geometries are considered and overlap probabilities of a particle with

a (k−1)-cluster are obtained by considering effective cross-sections of the cluster to form a k-cluster. Here we consider

the case up to k = 4 and probabilities of formation of all connected and disconnected graphs up to order 4 can be

obtained as analytical expressions. Schematically we describe the procedure and present results, which are compared

with Monte Carlo computations of cluster statistics, which are in very good agreement with theoretical predictions in

the low density regime. This provides single cluster probabilities which can be used in a next step for the statistical

analysis of larger systems, where combinatorial rules will be applied and which will be presented in another article [9].

OVERLAP PROBABILITIES

We consider disks of radius Rc, randomly placed inside a region of size Ωs = [0, 1]2 under periodic boundary condi-

tions. The computation of the overlap probability between disks can be mapped to the random line picking problem [4],

where the distance between two randomly placed points in space is considered. If the distance d between points is

d < 2Rc, disks overlap and form a 2-cluster (a cluster, which is formed by n particles is henceforth called an n-cluster).

If a first particle is placed randomly inside Ωs and a second particle is placed at a random position, where variates

x, y ∈ {0, 1} are drawn from a uniform distribution, it is obvious that the probability, i.e. the geometric cross-section,

for hitting an area element {r, r + dr} and {ϕ, ϕ+ dϕ} at a distance r from a point is p(ϕ, r) drdϕ = rdrdϕ and therefore

the total probability to form a 2-cluster is P2 =
∫ 2π

0
dϕ

∫ 2Rc

0
dr r = 4πR2

c which is the area of a disk with radius 2Rc.

To obtain the probability of larger clusters, we have to distinguish different cluster configurations for a given

number of particles. In general, this can be obtained by graph theoretical considerations, if we consider every particle

as a vertex and an overlap between particles as a bond or an edge in the graph. Our goal here is to derive probabilities

for clusters up to size of N = 4. From graph theory it is known that for N = 2 there is only one type of cluster if we

consider only the connected graphs. For N = 3 there are 2 types of graphs, one with two and one with three edges,

where the one with two edges has three different permutation states. For N = 4 there are 6 connected graphs, 2 with

three edges, 2 with four edges, 1 with five edges and 1 with six edges. Before considering these cases in more detail,

we compute the average configuration of a 2-cluster, i.e. the average distance between particles

〈d〉 = 1

4πR2
c

∫ 2π

0

dϕ

∫ 2Rc

0

dr r2 =
4

3
Rc (1)

From elementary geometry it is found that the overlap area Ao(R, d) between two disks of radius R in a distance d is

given by Ao(R, d) = 2R2 cos−1(d/2R)− d/2
√

4R2 − d2 so that the average overlap area over an interval r ∈ {0, 2π} for

disks with cross-section 2Rc is obtained as

〈Ao(2Rc)〉d =
1

4πR2
c

∫ 2π

0

dϕ

∫ 2Rc

0

dr

[

8r R2
c cos−1

(

r

4Rc

)

− r2

2

√

16R2
c − r2

]

= (4π − 3
√

3) R2
c (2)

To compute the probabilities of cluster formation of higher order, geometric criteria can be considered. In Figure 1

the possible graphs for a k-cluster are illustrated together with the eligible area Ω̄k within a (k−1)-cluster, which has to

be hit by a kth particle to form the proper k-cluster. The probability is then computed as the (k − 1)-cluster probability

multiplied by Ω̄k.

Probabilities for 3-clusters

Formation of ( ): The eligible area for a third particle is given as Ω̄3 = Ω2(2Rc) − Ω1(2Rc) ∩ Ω2(2Rc), which is

Ω̄3,1 = 4πR2
c − 〈Ao(2Rc)〉d. and therefore P3,1 = P2 × Ω̄3,1 = 12

√
3 π R4

c .

Formation of ( ): the eligible area Ω̄3,2 is calculated as the average overlap between two disks of radius 2Rc and

therefore P3,2 = P2 × Ω̄3,2 = 4π (4π − 3
√

3) R4
c .

Probabilities for 4-clusters

The probabilities for 4-clusters, represented by their proper graphs (cmp. Figure 1) are given in summary. We have

derived closed form analytical expressions for the eligible areas, which are partly too complex for the present article

and will be presented in full detail elsewhere [9].



1 

1 2 
1 

2 

2 1 3 

2 

1 
3 

3 

1 2 

3 

1 2 

3 

1 2 

2 1 

3 

FIGURE 1. Cluster configurations of size N − 1. Small circles represent disks of radius Rc, which overlap in their average config-

uration. Large circles of size 2Rc represent area of potential overlap if another particle is added. The shaded area indicates eligible

area, where an additional particle has to be positioned to form a cluster represented by the indicated graph. For clarity a possible

kth particle is shown as dotted circle.

• Formation of : P4,1 = P3,1 × Ω̄4,1, with Ω̄4,1 = Ω3 −Ω2 ∩Ω3

• Formation of : P4,2 = P′
3,1
× Ω̄4,2, with Ω̄4,2 = Ω3 −Ω1 ∩Ω3 −Ω2 ∩Ω3 + Ω1 ∩Ω2 ∩Ω3

• Formation of : P4,3 = P′′
3,1
× Ω̄4,3, with Ω̄4,3 = Ω1 ∩Ω3 −Ω1 ∩Ω2 ∩Ω3

• Formation of : P4,4 = P3,2 × Ω̄4,4, with Ω̄4,4 = Ω3 −Ω1 ∩Ω3 −Ω2 ∩Ω3 + Ω1 ∩Ω2 ∩Ω3

• Formation of : P4,5 = P3,2 × Ω̄4,5, with Ω̄4,5 = Ω1 ∩Ω3 −Ω1 ∩Ω2 ∩Ω3

• Formation of : P4,6 = P3,2 × Ω̄4,6, with Ω̄4,6 = Ω1 ∩Ω2 ∩Ω3

It is obvious that the eligible area of P4,2 and P4,4 is computed in a similar way. However, the underlying average

geometry of particles 1, 2, 3 is different in both cases and so the individual Ω̄’s are different. The same is true for

P4,3 and P4,5, where the probabilities P′
3,1

, P′′
3,1

restricts the formation of the underlying 3-cluster to geometries which

allow for a formation of the 4-clusters ( , ).

RESULTS

We have computed the individual probabilities of cluster formation according to the prescription given in the previous

Section for a set of particle sizes. Average configurations of clusters are approximated in the following way: the

distance between 2 disks is taken as the average overlap distance, i.e. 〈d〉 = 4/3Rc. For the higher order clusters,

structures are constructed by symmetry arguments. E.g. 3-clusters, represented by the two connected 3-graphs are built

by a linear configuration for and an equilateral triangular configuration for clusters, where distances between

disks are taken as average distance 〈d〉 (cmp. Figure 1). For the 4-clusters a similar procedure is followed. Only in the

case of , the average distance 〈d4〉 = (8 −
√

8)/3Rc between two disks is computed from the interval {
√

2Rc, 2Rc}
which is in agreement with the connected 4-graph. Probabilities p of configurations, represented by not connected

graphs (e.g. ), are computed as probability to form a cluster times the probability to not form a cluster with other

particles.

Explicit theoretical results are listed in Table 1. As reference, we have conducted Monte Carlo simulations,

where 109 trial configurations were analyzed for systems of N ∈ {2, 4} in a system with area Ωs = [0, 1]2. All

distinct clusters, represented by different graphs were identified and their probability of formation was computed by

geometrical integration. It is found that most theoretical predictions are in very good agreement with Monte Carlo



results. This applies especially to the cases of small disks. For the case of Rc = 0.2 finite size effects are expected

where the extent of the clusters gets larger than the box length, which is a signature of percolation.

TABLE 1. Overlap probabilities between circles in a [0, 1]2 box. Compared are results from Monte Carlo evaluations (pMC) and

theoretical predictions (pth), based on effective overlap areas between circles. Shown are results for systems with N = 2, 3, 4 and

different realizations of bonding configurations, represented by their proper graphs G.
pth pMC

N G 0.05 0.10 0.15 0.2 0.05 0.10 0.15 0.2

2 0.9686 0.8743 0.7172 0.4973 0.9686 0.8743 0.7173 0.4973

0.0314 0.1257 0.2828 0.5027 0.0314 0.1257 0.2827 0.5027

3 0.9087 0.6684 0.3690 0.1230 0.9081 0.6611 0.3447 0.0946

0.0300 0.1032 0.1689 0.1427 0.0300 0.1033 0.1698 0.1528

4.08 × 10−4 6.53 × 10−3 3.31 × 10−2 1.04 × 10−1 4.08 × 10−4 6.53 × 10−3 3.31 × 10−2 9.72 × 10−2

5.79 × 10−4 9.26 × 10−3 4.69 × 10−2 1.48 × 10−1 5.79 × 10−4 9.26 × 10−3 4.69 × 10−2 1.55 × 10−1

4 0.8257 0.4468 0.1362 0.0151 0.8237 0.4270 0.1007 0.0053

2.77 × 10−2 7.41 × 10−2 7.23 × 10−2 2.02 × 10−2 2.77 × 10−2 7.30 × 10−2 6.56 × 10−2 1.39 × 10−2

9.43 × 10−4 1.30 × 10−2 4.77 × 10−2 7.18 × 10−2 9.28 × 10−4 1.20 × 10−2 3.67 × 10−2 3.45 × 10−2

3.84 × 10−4 4.97 × 10−3 1.53 × 10−2 4.47 × 10−3 3.84 × 10−4 4.96 × 10−3 1.53 × 10−2 1.39 × 10−2

5.48 × 10−4 7.29 × 10−3 2.44 × 10−2 2.17 × 10−2 5.50 × 10−4 7.40 × 10−3 2.56 × 10−2 3.42 × 10−2

5.34 × 10−6 3.42 × 10−4 3.89 × 10−3 2.19 × 10−2 5.75 × 10−6 3.69 × 10−4 4.14 × 10−3 1.38 × 10−2

1.81 × 10−6 1.16 × 10−4 1.32 × 10−3 7.40 × 10−3 1.81 × 10−6 1.17 × 10−4 1.33 × 10−3 5.79 × 10−3

1.91 × 10−7 1.22 × 10−5 1.40 × 10−4 7.84 × 10−4 1.71 × 10−7 1.08 × 10−5 1.87 × 10−4 6.83 × 10−3

4.90 × 10−6 3.14 × 10−4 3.57 × 10−3 2.01 × 10−2 4.11 × 10−6 2.63 × 10−4 2.99 × 10−3 1.48 × 10−2

2.67 × 10−6 1.71 × 10−4 1.95 × 10−3 1.09 × 10−3 2.78 × 10−6 1.78 × 10−4 2.03 × 10−3 1.34 × 10−2

7.94 × 10−6 5.08 × 10−4 5.79 × 10−3 3.25 × 10−2 8.44 × 10−6 5.44 × 10−4 6.20 × 10−3 3.65 × 10−2

DISCUSSION

We have presented explicit results for the formation of all possible configurations of small clusters in 2-dimensional

disk systems. The work was motivated by the analysis of parallel Monte Carlo simulations, which suffer in efficiency

when areas of influence, administered by different threads show overlap. Taking the fully disconnected graphs as cases

where no performance degradation is to be expected we see that for small regions of influence with diameters 2Rc of

about 10% of the system dimension, the efficiency will be larger than 80%, which represents a conservative lower limit

for the parallel efficiency. This will of course change when more than 4 threads are used, i.e. more than 4 regions of

influence are concurrently computed. However, a full analysis will also consider cases with overlap between regions

which will be presented in a subsequent publication [9].
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