000885389 001__ 885389
000885389 005__ 20230217124406.0
000885389 0247_ $$2doi$$a10.1103/PhysRevE.102.032415
000885389 0247_ $$2ISSN$$a1063-651X
000885389 0247_ $$2ISSN$$a1095-3787
000885389 0247_ $$2ISSN$$a1538-4519
000885389 0247_ $$2ISSN$$a1539-3755
000885389 0247_ $$2ISSN$$a1550-2376
000885389 0247_ $$2ISSN$$a2470-0045
000885389 0247_ $$2ISSN$$a2470-0053
000885389 0247_ $$2ISSN$$a2470-0061
000885389 0247_ $$2Handle$$a2128/25828
000885389 0247_ $$2pmid$$apmid:33075965
000885389 0247_ $$2WOS$$aWOS:000579013900009
000885389 037__ $$aFZJ-2020-03786
000885389 082__ $$a530
000885389 1001_ $$00000-0002-1760-1959$$aGrigoriev, S. V.$$b0$$eCorresponding author
000885389 245__ $$aSwitch of fractal properties of DNA in chicken erythrocytes nuclei by mechanical stress
000885389 260__ $$aWoodbury, NY$$bInst.$$c2020
000885389 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-09-28
000885389 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-09-01
000885389 3367_ $$2DRIVER$$aarticle
000885389 3367_ $$2DataCite$$aOutput Types/Journal article
000885389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601897414_6316
000885389 3367_ $$2BibTeX$$aARTICLE
000885389 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885389 3367_ $$00$$2EndNote$$aJournal Article
000885389 520__ $$aThe small-angle neutron scattering (SANS) on the chicken erythrocyte nuclei demonstrates the bifractal nature of the chromatin structural organization. Use of the contrast variation (D2O−H2O) in SANS measurements reveals the differences in the DNA and protein arrangements inside the chromatin substance. It is the DNA that serves as a framework that constitutes the bifractal behavior showing the mass fractal properties with D=2.22 at a smaller scale and the logarithmic fractal behavior with D≈3 at a larger scale. The protein spatial organization shows the mass fractal properties with D≈2.34 throughout the whole nucleus. The borderline between two fractal levels can be significantly shifted toward smaller scales by centrifugation of the nuclei disposed on the dry substrate, since nuclei suffer from mechanical stress transforming them to a disklike shape. The height of this disk measured by atomic force microscopy (AFM) coincides closely with the fractal borderline, thus characterizing two types of the chromatin with the soft (at larger scale) and rigid (at smaller scale) properties. The combined SANS and AFM measurements demonstrate the stress induced switch of the DNA fractal properties from the rigid, but loosely packed, mass fractal to the soft, but densely packed, logarithmic fractal.
000885389 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000885389 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000885389 542__ $$2Crossref$$i2020-09-28$$uhttps://link.aps.org/licenses/aps-default-license
000885389 588__ $$aDataset connected to CrossRef
000885389 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000885389 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000885389 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x2
000885389 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000885389 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000885389 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000885389 7001_ $$0P:(DE-HGF)0$$aIashina, E. G.$$b1
000885389 7001_ $$00000-0002-5702-3209$$aBairamukov, V. Yu.$$b2
000885389 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b3
000885389 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b4
000885389 7001_ $$0P:(DE-HGF)0$$aFilatov, M. V.$$b5
000885389 7001_ $$0P:(DE-HGF)0$$aPantina, R. A.$$b6
000885389 7001_ $$0P:(DE-HGF)0$$aVarfolomeeva, E. Yu.$$b7
000885389 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.102.032415$$bAmerican Physical Society (APS)$$d2020-09-28$$n3$$p032415$$tPhysical Review E$$v102$$x2470-0045$$y2020
000885389 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.102.032415$$gVol. 102, no. 3, p. 032415$$n3$$p032415$$tPhysical review / E$$v102$$x2470-0045$$y2020
000885389 8564_ $$uhttps://juser.fz-juelich.de/record/885389/files/PRE_Grigoriev_v2.pdf$$yOpenAccess
000885389 8564_ $$uhttps://juser.fz-juelich.de/record/885389/files/PhysRevE.102.032415.pdf$$yOpenAccess
000885389 8564_ $$uhttps://juser.fz-juelich.de/record/885389/files/PRE_Grigoriev_v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885389 8564_ $$uhttps://juser.fz-juelich.de/record/885389/files/PhysRevE.102.032415.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885389 909CO $$ooai:juser.fz-juelich.de:885389$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000885389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b3$$kFZJ
000885389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b4$$kFZJ
000885389 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000885389 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000885389 9141_ $$y2020
000885389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000885389 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000885389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2018$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885389 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000885389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000885389 920__ $$lyes
000885389 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000885389 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000885389 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000885389 980__ $$ajournal
000885389 980__ $$aVDB
000885389 980__ $$aUNRESTRICTED
000885389 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000885389 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000885389 980__ $$aI:(DE-588b)4597118-3
000885389 9801_ $$aFullTexts
000885389 999C5 $$1B. Mandelbrot$$2Crossref$$9-- missing cx lookup --$$a10.1119/1.13295$$y1983
000885389 999C5 $$1J. Feder$$2Crossref$$oJ. Feder Fractals 1998$$tFractals$$y1998
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0378-4371(98)00440-3
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.258101
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:0198800490120209500
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/23/5/012
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1181369
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10577-010-9177-0
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057671900921X
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/S106377611908017X
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.4161/nucl.21222
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1586/14737159.2013.828889
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/14737159.2019.1597707
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889887087107
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889888000263
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2007.01.028
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gks586
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.febslet.2005.01.052
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/S1063783410050379
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/351/1/012007
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.96.012411
000885389 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/S1027451017040334