Home > Publications database > Switch of fractal properties of DNA in chicken erythrocytes nuclei by mechanical stress > print |
001 | 885389 | ||
005 | 20230217124406.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevE.102.032415 |2 doi |
024 | 7 | _ | |a 1063-651X |2 ISSN |
024 | 7 | _ | |a 1095-3787 |2 ISSN |
024 | 7 | _ | |a 1538-4519 |2 ISSN |
024 | 7 | _ | |a 1539-3755 |2 ISSN |
024 | 7 | _ | |a 1550-2376 |2 ISSN |
024 | 7 | _ | |a 2470-0045 |2 ISSN |
024 | 7 | _ | |a 2470-0053 |2 ISSN |
024 | 7 | _ | |a 2470-0061 |2 ISSN |
024 | 7 | _ | |a 2128/25828 |2 Handle |
024 | 7 | _ | |a pmid:33075965 |2 pmid |
024 | 7 | _ | |a WOS:000579013900009 |2 WOS |
037 | _ | _ | |a FZJ-2020-03786 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Grigoriev, S. V. |0 0000-0002-1760-1959 |b 0 |e Corresponding author |
245 | _ | _ | |a Switch of fractal properties of DNA in chicken erythrocytes nuclei by mechanical stress |
260 | _ | _ | |a Woodbury, NY |c 2020 |b Inst. |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2020-09-28 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2020-09-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1601897414_6316 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The small-angle neutron scattering (SANS) on the chicken erythrocyte nuclei demonstrates the bifractal nature of the chromatin structural organization. Use of the contrast variation (D2O−H2O) in SANS measurements reveals the differences in the DNA and protein arrangements inside the chromatin substance. It is the DNA that serves as a framework that constitutes the bifractal behavior showing the mass fractal properties with D=2.22 at a smaller scale and the logarithmic fractal behavior with D≈3 at a larger scale. The protein spatial organization shows the mass fractal properties with D≈2.34 throughout the whole nucleus. The borderline between two fractal levels can be significantly shifted toward smaller scales by centrifugation of the nuclei disposed on the dry substrate, since nuclei suffer from mechanical stress transforming them to a disklike shape. The height of this disk measured by atomic force microscopy (AFM) coincides closely with the fractal borderline, thus characterizing two types of the chromatin with the soft (at larger scale) and rigid (at smaller scale) properties. The combined SANS and AFM measurements demonstrate the stress induced switch of the DNA fractal properties from the rigid, but loosely packed, mass fractal to the soft, but densely packed, logarithmic fractal. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 1 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
542 | _ | _ | |i 2020-09-28 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Soft Condensed Matter |0 V:(DE-MLZ)SciArea-210 |2 V:(DE-HGF) |x 1 |
650 | 2 | 7 | |a Medicine |0 V:(DE-MLZ)SciArea-190 |2 V:(DE-HGF) |x 2 |
650 | 1 | 7 | |a Polymers, Soft Nano Particles and Proteins |0 V:(DE-MLZ)GC-1602-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e KWS-2: Small angle scattering diffractometer |f NL3ao |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)KWS2-20140101 |5 EXP:(DE-MLZ)KWS2-20140101 |6 EXP:(DE-MLZ)NL3ao-20140101 |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e KWS-3: Very small angle scattering diffractometer with focusing mirror |f NL3auS |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)KWS3-20140101 |5 EXP:(DE-MLZ)KWS3-20140101 |6 EXP:(DE-MLZ)NL3auS-20140101 |x 1 |
700 | 1 | _ | |a Iashina, E. G. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bairamukov, V. Yu. |0 0000-0002-5702-3209 |b 2 |
700 | 1 | _ | |a Pipich, Vitaliy |0 P:(DE-Juel1)130893 |b 3 |
700 | 1 | _ | |a Radulescu, Aurel |0 P:(DE-Juel1)130905 |b 4 |
700 | 1 | _ | |a Filatov, M. V. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pantina, R. A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Varfolomeeva, E. Yu. |0 P:(DE-HGF)0 |b 7 |
773 | 1 | 8 | |a 10.1103/physreve.102.032415 |b American Physical Society (APS) |d 2020-09-28 |n 3 |p 032415 |3 journal-article |2 Crossref |t Physical Review E |v 102 |y 2020 |x 2470-0045 |
773 | _ | _ | |a 10.1103/PhysRevE.102.032415 |g Vol. 102, no. 3, p. 032415 |0 PERI:(DE-600)2844562-4 |n 3 |p 032415 |t Physical review / E |v 102 |y 2020 |x 2470-0045 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/885389/files/PRE_Grigoriev_v2.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/885389/files/PhysRevE.102.032415.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/885389/files/PRE_Grigoriev_v2.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/885389/files/PhysRevE.102.032415.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:885389 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130893 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130905 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 1 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-24 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV E : 2018 |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-24 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k JCNS-1 |l Neutronenstreuung |x 1 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1119/1.13295 |1 B. Mandelbrot |2 Crossref |9 -- missing cx lookup -- |y 1983 |
999 | C | 5 | |1 J. Feder |y 1998 |2 Crossref |t Fractals |o J. Feder Fractals 1998 |
999 | C | 5 | |a 10.1016/S0378-4371(98)00440-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.107.258101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1051/jphys:0198800490120209500 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1209/0295-5075/23/5/012 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1181369 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s10577-010-9177-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S160057671900921X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1134/S106377611908017X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.4161/nucl.21222 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1586/14737159.2013.828889 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1080/14737159.2019.1597707 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0021889887087107 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1107/S0021889888000263 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.cell.2007.01.028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/nar/gks586 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.febslet.2005.01.052 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1134/S1063783410050379 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1742-6596/351/1/012007 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.96.012411 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1134/S1027451017040334 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|