000885390 001__ 885390
000885390 005__ 20240711113532.0
000885390 0247_ $$2doi$$a10.1016/j.nme.2020.100789
000885390 0247_ $$2Handle$$a2128/25885
000885390 0247_ $$2WOS$$aWOS:000600734700008
000885390 037__ $$aFZJ-2020-03787
000885390 082__ $$a624
000885390 1001_ $$0P:(DE-Juel1)130166$$aTerra, A.$$b0$$eCorresponding author
000885390 245__ $$aMicro-structured tungsten, a high heat flux pulse proof material
000885390 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000885390 3367_ $$2DRIVER$$aarticle
000885390 3367_ $$2DataCite$$aOutput Types/Journal article
000885390 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602763263_1062
000885390 3367_ $$2BibTeX$$aARTICLE
000885390 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885390 3367_ $$00$$2EndNote$$aJournal Article
000885390 520__ $$aMicro structured tungsten is a new approach to address one of the main issues of tungsten as high heat flux (HHF) plasma facing material (PFM), which is its brittleness and its propensity to crack formation under pulsed, ELM like, heat loads [2], [3]. With power densities between 100 MW/m2 and 1 GW/m2, progressive thermal fatigue induced damages like roughening, subsequent cracking and even melting will occur in dependence on the pulse number and PFM base temperature. This represents a serious issue for the usage of tungsten as HHF-PFM. In future tokamaks, such as ITER, about 108 ELMs are expected to occur during the operational lifetime.Several approaches have been tried to overcome this brittleness issue, e.g. alloying tungsten with others elements [4] or introducing pseudo-ductility due to the additions of fibres thus creating composites [5]. Micro-structured tungsten showed a significant improvement in comparison with any of these approaches with respect to the damage expected by ELMs. This investigation on both bulk reference and micro-structured tungsten was performed in the PSI-2 facility [8]. A sequential load was applied combining steady state deuterium plasma (5.1×1025 D+ m-2, 51 eV, 240°C, 150 min) loading with laser pulses (up to 105 pulses of 0.5 GW/m2, 3.6 mm spot diameter, 20 J, 1 ms pulse duration, up to 25 Hz pulse frequency). In contrast to reference bulk tungsten, none of the applied loading conditions caused any evident damage on the micro-structured tungsten. The maximum surface temperature within the loaded area measured with a fast pyrometer was increased by about 800°C at the end of the laser exposure for the reference sample. This is related to the emissivity changes and local temperature increase caused by surface degradation. Meanwhile, the micro-structured sample did not show any change of its temperature response from the 10th to the 100 000th pulse.
000885390 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000885390 588__ $$aDataset connected to CrossRef
000885390 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b1
000885390 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b2
000885390 7001_ $$0P:(DE-Juel1)167463$$aMartynova, Y.$$b3
000885390 7001_ $$0P:(DE-Juel1)162160$$aRasiński, M.$$b4
000885390 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b5
000885390 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b6
000885390 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b7
000885390 7001_ $$0P:(DE-Juel1)171293$$aDorow-Gerspach, D.$$b8
000885390 7001_ $$0P:(DE-Juel1)165931$$aMao, Y.$$b9
000885390 7001_ $$0P:(DE-Juel1)174255$$aSchwalenberg, D.$$b10
000885390 7001_ $$0P:(DE-Juel1)169774$$aRaumann, L.$$b11
000885390 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b12
000885390 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b13
000885390 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b14
000885390 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b15
000885390 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2020.100789$$gp. 100789 -$$p100789 -$$tNuclear materials and energy$$v25$$x2352-1791$$y2020
000885390 8564_ $$uhttps://juser.fz-juelich.de/record/885390/files/1-s2.0-S235217912030065X-main.pdf$$yOpenAccess
000885390 8564_ $$uhttps://juser.fz-juelich.de/record/885390/files/1-s2.0-S235217912030065X-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885390 8767_ $$8OAD0000072288$$92020-10-01$$d2020-10-09$$eAPC$$jZahlung erfolgt$$zBelegnr 1200157941
000885390 909CO $$ooai:juser.fz-juelich.de:885390$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130166$$aForschungszentrum Jülich$$b0$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b1$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b2$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b4$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b5$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b6$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b7$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171293$$aForschungszentrum Jülich$$b8$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165931$$aForschungszentrum Jülich$$b9$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174255$$aForschungszentrum Jülich$$b10$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169774$$aForschungszentrum Jülich$$b11$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b12$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b13$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b14$$kFZJ
000885390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b15$$kFZJ
000885390 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000885390 9141_ $$y2020
000885390 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-14
000885390 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885390 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885390 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000885390 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000885390 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000885390 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000885390 9801_ $$aAPC
000885390 9801_ $$aFullTexts
000885390 980__ $$ajournal
000885390 980__ $$aVDB
000885390 980__ $$aUNRESTRICTED
000885390 980__ $$aI:(DE-Juel1)IEK-4-20101013
000885390 980__ $$aI:(DE-Juel1)IEK-2-20101013
000885390 980__ $$aAPC
000885390 981__ $$aI:(DE-Juel1)IMD-1-20101013
000885390 981__ $$aI:(DE-Juel1)IFN-1-20101013