000885391 001__ 885391
000885391 005__ 20240610120123.0
000885391 0247_ $$2doi$$a10.1038/s41586-020-2730-x
000885391 0247_ $$2ISSN$$a0028-0836
000885391 0247_ $$2ISSN$$a1476-4687
000885391 0247_ $$2Handle$$a2128/25827
000885391 0247_ $$2altmetric$$aaltmetric:91474401
000885391 0247_ $$2pmid$$apmid:32999485
000885391 0247_ $$2WOS$$aWOS:000574283500009
000885391 037__ $$aFZJ-2020-03788
000885391 082__ $$a500
000885391 1001_ $$00000-0001-6255-2298$$aVutukuri, Hanumantha Rao$$b0$$eCorresponding author
000885391 245__ $$aActive particles induce large shape deformations in giant lipid vesicles
000885391 260__ $$aLondon [u.a.]$$bNature Publ. Group78092$$c2020
000885391 3367_ $$2DRIVER$$aarticle
000885391 3367_ $$2DataCite$$aOutput Types/Journal article
000885391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617694132_23616
000885391 3367_ $$2BibTeX$$aARTICLE
000885391 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885391 3367_ $$00$$2EndNote$$aJournal Article
000885391 520__ $$aBiological cells generate intricate structures by sculpting their membrane from within to actively sense and respond to external stimuli or to explore their environment1,2,3,4. Several pathogenic bacteria also provide examples of how localized forces strongly deform cell membranes from inside, leading to the invasion of neighbouring healthy mammalian cells5. Giant unilamellar vesicles have been successfully used as a minimal model system with which to mimic biological cells6,7,8,9,10,11, but the realization of a minimal system with localized active internal forces that can strongly deform lipid membranes from within and lead to dramatic shape changes remains challenging. Here we present a combined experimental and simulation study that demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations. Using confocal microscopy, in the experiments we explore the membrane response to local forces exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane changes, we perform Langevin dynamics simulations of active Brownian particles enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The most pronounced shape changes are observed at low and moderate particle loadings, with the formation of tether-like protrusions and highly branched, dendritic structures, whereas at high volume fractions globally deformed vesicle shapes are observed. The resulting state diagram predicts the conditions under which local internal forces generate various membrane shapes. A controlled realization of such distorted vesicle morphologies could improve the design of artificial systems such as small-scale soft robots and synthetic cells.
000885391 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000885391 536__ $$0G:(DE-Juel1)jiff26_20190501$$aHydrodynamics of Active Biological Systems (jiff26_20190501)$$cjiff26_20190501$$fHydrodynamics of Active Biological Systems$$x1
000885391 588__ $$aDataset connected to CrossRef
000885391 7001_ $$0P:(DE-Juel1)166533$$aHoore, Masoud$$b1
000885391 7001_ $$0P:(DE-HGF)0$$aAbaurrea-Velasco, Clara$$b2
000885391 7001_ $$0P:(DE-HGF)0$$avan Buren, Lennard$$b3
000885391 7001_ $$0P:(DE-HGF)0$$aDutto, Alessandro$$b4
000885391 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b5
000885391 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b6
000885391 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b7
000885391 7001_ $$00000-0002-0352-0656$$aVermant, Jan$$b8
000885391 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-020-2730-x$$gVol. 586, no. 7827, p. 52 - 56$$n7827$$p52 - 56$$tNature <London>$$v586$$x1476-4687$$y2020
000885391 8564_ $$uhttps://juser.fz-juelich.de/record/885391/files/s41586-020-2730-x-1.pdf$$yOpenAccess
000885391 8564_ $$uhttps://juser.fz-juelich.de/record/885391/files/s41586-020-2730-x-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885391 8767_ $$82676213025$$92020-11-10$$d2020-11-20$$eColour charges$$jZahlung erfolgt$$zBelegnr. 1200159967
000885391 909CO $$ooai:juser.fz-juelich.de:885391$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access
000885391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b5$$kFZJ
000885391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b6$$kFZJ
000885391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b7$$kFZJ
000885391 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000885391 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885391 9141_ $$y2020
000885391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000885391 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2018$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2018$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-12
000885391 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885391 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000885391 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000885391 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000885391 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000885391 9801_ $$aAPC
000885391 9801_ $$aFullTexts
000885391 980__ $$ajournal
000885391 980__ $$aVDB
000885391 980__ $$aI:(DE-Juel1)IBI-5-20200312
000885391 980__ $$aI:(DE-82)080012_20140620
000885391 980__ $$aAPC
000885391 980__ $$aUNRESTRICTED
000885391 981__ $$aI:(DE-Juel1)IAS-2-20090406