001     885391
005     20240610120123.0
024 7 _ |a 10.1038/s41586-020-2730-x
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a 2128/25827
|2 Handle
024 7 _ |a altmetric:91474401
|2 altmetric
024 7 _ |a pmid:32999485
|2 pmid
024 7 _ |a WOS:000574283500009
|2 WOS
037 _ _ |a FZJ-2020-03788
082 _ _ |a 500
100 1 _ |a Vutukuri, Hanumantha Rao
|0 0000-0001-6255-2298
|b 0
|e Corresponding author
245 _ _ |a Active particles induce large shape deformations in giant lipid vesicles
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publ. Group78092
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617694132_23616
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biological cells generate intricate structures by sculpting their membrane from within to actively sense and respond to external stimuli or to explore their environment1,2,3,4. Several pathogenic bacteria also provide examples of how localized forces strongly deform cell membranes from inside, leading to the invasion of neighbouring healthy mammalian cells5. Giant unilamellar vesicles have been successfully used as a minimal model system with which to mimic biological cells6,7,8,9,10,11, but the realization of a minimal system with localized active internal forces that can strongly deform lipid membranes from within and lead to dramatic shape changes remains challenging. Here we present a combined experimental and simulation study that demonstrates how self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora of non-equilibrium shapes and active membrane fluctuations. Using confocal microscopy, in the experiments we explore the membrane response to local forces exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane changes, we perform Langevin dynamics simulations of active Brownian particles enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The most pronounced shape changes are observed at low and moderate particle loadings, with the formation of tether-like protrusions and highly branched, dendritic structures, whereas at high volume fractions globally deformed vesicle shapes are observed. The resulting state diagram predicts the conditions under which local internal forces generate various membrane shapes. A controlled realization of such distorted vesicle morphologies could improve the design of artificial systems such as small-scale soft robots and synthetic cells.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
536 _ _ |a Hydrodynamics of Active Biological Systems (jiff26_20190501)
|0 G:(DE-Juel1)jiff26_20190501
|c jiff26_20190501
|f Hydrodynamics of Active Biological Systems
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoore, Masoud
|0 P:(DE-Juel1)166533
|b 1
700 1 _ |a Abaurrea-Velasco, Clara
|0 P:(DE-HGF)0
|b 2
700 1 _ |a van Buren, Lennard
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dutto, Alessandro
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Auth, Thorsten
|0 P:(DE-Juel1)130514
|b 5
700 1 _ |a Fedosov, Dmitry A.
|0 P:(DE-Juel1)140336
|b 6
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 7
700 1 _ |a Vermant, Jan
|0 0000-0002-0352-0656
|b 8
773 _ _ |a 10.1038/s41586-020-2730-x
|g Vol. 586, no. 7827, p. 52 - 56
|0 PERI:(DE-600)1413423-8
|n 7827
|p 52 - 56
|t Nature
|v 586
|y 2020
|x 1476-4687
856 4 _ |u https://juser.fz-juelich.de/record/885391/files/s41586-020-2730-x-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885391/files/s41586-020-2730-x-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885391
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130514
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)140336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Engineering Cell Function
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-01-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
920 1 _ |0 I:(DE-Juel1)IBI-5-20200312
|k IBI-5
|l Theoretische Physik der Lebenden Materie
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-5-20200312
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21