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Active particles induce large shape 
deformations in giant lipid vesicles

Hanumantha Rao Vutukuri1,3 ✉, Masoud Hoore2,3, Clara Abaurrea-Velasco2,  
Lennard van Buren1, Alessandro Dutto1, Thorsten Auth2, Dmitry A. Fedosov2,  
Gerhard Gompper2 ✉ & Jan Vermant1

Biological cells generate intricate structures by sculpting their membrane from within 
to actively sense and respond to external stimuli or to explore their environment1–4. 
Several pathogenic bacteria also provide examples of how localized forces strongly 
deform cell membranes from inside, leading to the invasion of neighbouring healthy 
mammalian cells5. Giant unilamellar vesicles have been successfully used as a minimal 
model system with which to mimic biological cells6–11, but the realization of a minimal 
system with localized active internal forces that can strongly deform lipid membranes 
from within and lead to dramatic shape changes remains challenging. Here we  
present a combined experimental and simulation study that demonstrates how 
self-propelled particles enclosed in giant unilamellar vesicles can induce a plethora  
of non-equilibrium shapes and active membrane fluctuations. Using confocal 
microscopy, in the experiments we explore the membrane response to local forces 
exerted by self-phoretic Janus microswimmers. To quantify dynamic membrane 
changes, we perform Langevin dynamics simulations of active Brownian particles 
enclosed in thin membrane shells modelled by dynamically triangulated surfaces. The 
most pronounced shape changes are observed at low and moderate particle loadings, 
with the formation of tether-like protrusions and highly branched, dendritic 
structures, whereas at high volume fractions globally deformed vesicle shapes are 
observed. The resulting state diagram predicts the conditions under which local 
internal forces generate various membrane shapes. A controlled realization of such 
distorted vesicle morphologies could improve the design of artificial systems such as 
small-scale soft robots and synthetic cells.

Active or self-propelled particles (SPPs) have been shown to accumu-
late at hard surfaces12 and in regions with high concave curvature13 so 
that their activity leads to different spatial distributions compared 
to passive Brownian systems14,15. Giant unilamellar vesicles (GUVs) 
and biological cells represent soft confinements in which localized 
forces can deform the boundaries6–8,10,11. This may create a complex 
feedback loop between curvature-induced SPP accumulation, active 
force (swim pressure) generation and subsequent dynamic changes of 
vesicle shape. The possible occurrence of such a feedback loop raises 
questions about stationary and dynamic shapes, their transformation, 
activity and dependence on the number of SPPs. Simulation studies 
have predicted predominantly global vesicle shape changes, such as 
prolate vesicles with accumulation of SPPs at the poles16,17 in two dimen-
sions, and prolate, oblate and stomatocyte shapes18 for floppy vesicles 
in three dimensions.

Here we realize and systematically characterize active vesicles by 
varying the number of SPPs (in experiments and simulations) and their 
propulsion strength (in simulations) for two different vesicle tensions. 

Our combined experimental and simulation study demonstrates the 
emergence of strongly deformed non-equilibrium shapes such as highly 
branched dendritic structures.

Activity-induced vesicle shapes
Self-propelled Janus colloids (half Pt-coated polystyrene) of diameter 
σ = 1.0 μm, which have no specific interactions with the membrane (both 
in the absence and presence of propulsion; Extended Data Fig. 1), are 
encapsulated in GUVs of 1,2-dioleoyl-sn-glycero-3-phosphocholine 
lipids (Methods). These SPPs are force- and torque-free14,15 and pro-
pel owing to diffusiophoretic forces with a velocity of vp, controlled 
by varying the fuel concentration of hydrogen peroxide (H2O2) (Sup-
plementary Information). When an SPP reaches the vesicle surface, 
it pushes against the membrane (Supplementary Video 1), and the 
response of the membrane opposes the propulsion force. This force is 
exerted on the membrane as long as the Janus particle does not reorient, 
which is characterized by its rotational diffusion time τr. The resulting 
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membrane deformation, the elastic restoring force and the emerg-
ing complex and dynamic vesicle shapes are controlled by the SPP 
propulsion velocity vp, the number Np of SPPs, the membrane bending 
rigidity κc and the total tension λ = λp + λa, which consists of the passive 
tension λp and the active tension λa induced by SPPs. Three dimension-
less numbers describe the importance of these parameters: the Péclet 
number Pe = vpσ/Dt (Dt is the translational diffusion coefficient), which 
indirectly measures the propulsion force, the SPP volume fraction ϕ 
and the reduced tension λ* = λR2/(kBT), where R is the vesicle radius,  
T is the temperature and kB is the Boltzmann constant.

To elucidate the physical mechanisms involved in the formation of 
complex non-equilibrium vesicle structures, mesoscopic simulations 
are performed. The in silico model consists of active Brownian particles 
enclosed by a dynamically triangulated membrane19. Bending elastic-
ity, membrane fluidity and area conservation are taken into account, 
in some cases in combination with a volume constraint for the vesicle 
(Methods).

A series of experiments and simulations were performed to inter-
rogate membrane dynamics and shape transitions for two different 
values of the passive membrane tension λp and various particle con-
centrations ϕ. In the experiments, because the density of the internal 
fluid is higher than that of the external fluid, the vesicles sediment to 
the bottom of the observation chamber, where they flatten and can 
easily be imaged by combined high-speed confocal and bright-field 
microscopy. Figure 1a–d shows time-lapse images of the dynamic 
response of a vesicle to the active particles at a low particle concen-
tration (ϕ ≈ 4 × 10−4) and low tension (λp = 13 ± 7 nN m−1; all uncertainties 

indicate mean ± s.d.). The bending rigidity (κc = (18 ± 6)kBT) and pas-
sive tension of vesicles are estimated by the analysis of the membrane 
undulation modes6,20 (Methods). Even though the propulsion forces 
fp ≈ 0.1 pN (for vp = 15.0 ± 2.0 μm s−1, Pe = 33–39) of a single SPP are small, 
for low-tension vesicles these forces are sufficient to locally deform 
the membrane. Tether formation is typically initiated cooperatively 
(inset of Fig. 1a): as a few SPPs deform the membrane (Fig. 1b), addi-
tional SPPs can become trapped in this region of higher curvature, 
thereby increasing the local force on the membrane and forming a 
tether (Supplementary Video 1). A high degree of wrapping of SPPs by 
the membrane slows down particle movement considerably, as shown 
by the overlaid particle trajectories in the insets of Fig. 1c, d, because of 
membrane viscoelastic resistance and the reduction of SPP accessibility 
to the fuel. By contrast, for high membrane tension (λp = 25 ± 9 μN m−1), 
the same propulsion force is too weak to overcome the deformation 
energy cost for tether formation, as shown in Fig. 1g. In this case, the 
SPPs follow the membrane curvature and perform a circling motion 
(Supplementary Video 1) similar to that of rodents in a hamster wheel.

Further, in low-tension vesicles, increase in particle concentration 
(ϕ ≈ 3 × 10−3) leads to the formation of long tubular protrusions in which 
SPPs become tightly packed, as illustrated in Fig. 1e. The particles that 
are close to the neck of a tube can change their propulsion direction 
via rotational diffusion and move in or out of the protrusion (inset of 
Fig. 1e, Extended Data Fig. 2a–d). Moreover, changes in local mem-
brane curvature induce pronounced clustering of SPPs and lead to a 
cooperative wrapping process. For example, a cluster of several par-
ticles (ten) generates increased local stress, so that very long tethers 
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Fig. 1 | Dynamic response of the lipid membrane at a low (flaccid) and  
high tension of vesicles to the encapsulated SPPs at different volume 
fractions ϕ. a–d, Sequence of time-lapse two-dimensional confocal and 
bright-field microscopy images showing various membrane deformations 
from partial and full wrapping to tethering. a, Tether formation. b, The inset 
shows that a second particle enters an already existing tether. c–d, Other SPPs 
with partially and fully wrapped states, and subsequent budding (inset in d). 
The magenta boxes depict magnified views of particles that are either outside 
or in close proximity to the membrane. e, Tethers consisting of multiple active 

particles. The inset illustrates a cooperative chain-like packing of SPPs.  
f, Membrane curvature-mediated accumulation of SPPs. g, Dynamics of active 
particles in a high-tension vesicle, showing no tethering and the circular 
trajectory of an SPP near the membrane. h–j, Time-lapse images illustrating  
the shape change from a sphere to two twin vesicles connected by a tether.  
a, e–j, Simulation snapshots corroborating the experimental observations.  
We note that the degree of transparency of vesicle colour is varied to better 
visualize the SPPs inside GUVs. All scale bars are 10 μm.
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(≈200 μm) form and remain stable until the particles reorient and the 
tether retracts (Extended Data Figs. 2e-j).

For SPP concentrations of ϕ ≈ 10−2, many SPPs accumulate in regions 
of higher membrane curvature for near-spherical shapes, thereby 
inducing pronounced global membrane deformations; see Fig. 1f. There 
are two possible explanations for tether suppression and the prefer-
ence for global shape changes: (i) the net propulsion force of individual 
particles decreases because of crowding and of their tendency to cluster 
owing to diffusiophoretic attraction14,15 and (ii) activity-induced mem-
brane tension prevents local deformations of the vesicle (see sections 
‘State diagram of active-vesicle shapes’ and ‘Shape fluctuations’). At 
high SPP concentrations (for example, ϕ ≈ 1.9 × 10−1), the vesicle can 
transform into bola-like and prolate shapes (Fig. 1h, i, Supplemen-
tary Video 2), with satellites connected by thin particle-laden tethers 
(Fig. 1j). The selected snapshots in Fig. 1, which show tethers (Fig. 1b), 
dendrites (Fig. 1e) and bolas and dumbbells, reveal the excellent cor-
respondence between experiments and simulations. Supplementary 
Videos 3–5 demonstrate the dynamic formation of a few vesicle shapes 
for different Pe and ϕ values.

State diagram of active-vesicle shapes
The main focus of our simulations is the investigation of the effect of 
propulsion strength on the vesicle shape, and the construction of a state 
diagram for flaccid active vesicles (passive tension of λp ≈ 2 × 10−8 N m−1), 
where properties are predominantly determined by bending elastic-
ity. The full state diagram as a function of Pe and volume fraction ϕ is 
shown in Fig. 2a for a vesicle that can freely adjust its internal volume 
at a fixed membrane area. The shape diagram from simulations with 
a volume constraint for a reduced volume of v = 0.8 is qualitatively 
similar; see Extended Data Fig. 3. Three distinct regimes are identified. 
(i) The ‘tethering’ regime, with long and thin tethers originating from a 
mother vesicle, occurs for large enough Pe and small-to-moderate ϕ. 
With increasing ϕ, the number of tethers first increases, as each SPP 
pulls its own tether, and then decreases, as several SPPs tend to cluster 
in one tether. Here, an interesting feature is the filling of the tethers by 
additional SPPs and the formation of large SPP clusters in small satellite 
vesicles at the end of the tethers. (ii) The ‘fluctuating’ regime for suf-
ficiently small Pe is characterized by quasi-spherical vesicle shapes and 
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Fig. 2 | State diagram of various membrane structures. a, Simulated diagram 
for different Pe and ϕ values in the three regimes: tethering (blue symbols), 
fluctuating (red symbols) and bola/prolate (green symbols) vesicle shapes.  
The points corresponding to the snapshots have black outlines. All simulations 
are without a volume constraint and with a passive tension of λp ≈ 2 × 10−8 N m−1, 
mimicking a flaccid vesicle. The black lines correspond to theoretical 

estimates of the tethering boundaries with γ = 0.25 and c0 = 0 (see Methods).  
At low ϕ, ⟨Np,c⟩ = 1, β = 1 and σcl = σ are used, whereas at large ϕ, β = 0.54 and  
⟨Np,c⟩ are computed directly from simulations (Extended Data Fig. 4). b, The 
experimental shape diagram summarizes the observed vesicle shapes induced 
by the activity of SPPs for different ϕ and fixed Pe. c, High-tension vesicles are 
not showing any noticeable deformations. All scale bars are 10 μm.
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the absence of tethers. (iii) The ‘bola/prolate’ regime occurs for large 
Pe and ϕ and displays strong global shape changes, with the formation 
of two or more satellite vesicles.

The phase boundary between tethered and non-tethered vesicle 
shapes in Fig. 2a can be understood theoretically from the balance 
between the pushing forces of particle clusters, membrane curvature 
elasticity, and passive and active membrane tension (Methods). To pull 
a tether21,22, the force fp,c = βNp,c fp of a cluster of Np,c SPPs with diameter 
σcl ≈ σ⟨Np,c⟩1/3 (where β ≤ 1 is the cluster cooperativity coefficient, which 
measures orientation alignment) must overcome the elastic membrane 
force f σ λ λ κ σ κ c σ= π ( + + 2 / − 4 / )tether cl p a c cl

2
c 0 cl . For a single SPP (Np = 1), 

this estimate yields Pec ≈ 140 (for κc = 20kBT, λp = 0 and spontaneous 
curvature c0 = 0), in good agreement with the simulated phase bound-
ary in Fig. 2a for small ϕ. Higher particle loadings induce two effects: 
(i) the formation of oriented particle clusters with average size 
⟨Np,c⟩ = αNp that increases linearly with Np (or equivalently ϕ), where α 
is a monotonically increasing function of Pe (see Extended Data Fig. 4) 
and (ii) an active tension due to the internal swim pressure23, approxi-
mated as λa = γNpfp/(8πR) via the Young–Laplace equation (γ < 1 is the 

active-tension weight, as not all SPPs exert a force perpendicular to 
the membrane). For λp ≈ 0, this implies that the bending rigidity term 
in ftether decreases as Np

−1/3, whereas the active-tension term increases 
as Np

4/3. Therefore, Pec for tether formation first decreases at moderate 
ϕ owing to SPP clustering, and then increases at large ϕ because of the 
increasing λa, suppressing tether formation (see Fig. 2a). It is notewor-
thy that the theoretical phase boundaries in Fig. 2a agree very well with 
the simulation results, which confirms that the relevant mechanisms 
are captured correctly.

Figure 2b demonstrates that the experimental results are in good 
qualitative agreement with the simulations, although the simulations 
exclude the details of the diffusiophoretic particle propulsion and 
hydrodynamic interactions. Interestingly, for equivalent vesicle con-
formations, the experimental Pe is typically smaller by a factor of 4–5 
than that obtained in the simulations. This could be due to a local spon-
taneous membrane curvature induced by a local change in lipid con-
centration, to differences in membrane viscoelasticity or to changes in 
reorientation time because of particle wrapping by the membrane in the 
experimental system. We demonstrate that a sufficiently low reduced 
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Fig. 3 | Shape f luctuation spectra for both passive and active vesicles.  
a, Experimental shape fluctuation spectra as a function of mode number  
 ℓ for GUVs that enclose passive and active colloids with volume fraction 
ϕ ≈ 0.009. Inset, experimental PDFs of the radial position of the fluctuating 
contour from its average position for low-tension passive and active vesicles. 
Error bars indicate the mean ± s.d. of three independent measurements.  
b, Normalized FWHM of P(ΔR) for different Pe and ϕ with and without volume 
constraint (VC) from three-dimensional simulations. Inset, PDFs of the radial 

position of the fluctuating contour from its average position for the case 
with volume constraint (0.96 < v < 0.99) and ϕ = 0.06. c–d, Simulation 
spectra for vesicles with volume constraint (0.96 < v < 0.99) for volume 
fractions ϕ = 0.06 (c) and ϕ = 0.36 (d) and various Pe values. The tension of 
the passive vesicle is found to be λp ≈ 6 × 10−7 N m−1. The insets show the 
exponents obtained from power-law fits to ℓα, measured in the ranges 
3 ≤ ℓ ≤ 12 for α1 and 35 ≤ ℓ ≤ 80 for α2.
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volume v lowers the critical value of Pe for the formation of complex 
tethers. For instance, tethers and daughter vesicles are observed at 
Pe > 100 for v ≈ 1.0 (Fig. 2a) and at Pe ≈ 100 for v = 0.8, whereas tether-like 
protrusions appear already at Pe = 50 for v = 0.6 (Extended Data Fig. 3). 
At high particle loadings, vesicle topology changes were observed 
in the experiments (Extended Data Fig. 5, Supplementary Informa-
tion), whereas topological changes were not allowed in the simulations 
(see Methods). We note that in our out-of-equilibrium system, shape 
and tension can vary dynamically, as demonstrated in Supplementary 
Video 6, where a cluster of fast-moving (vp ≈ 21 μm s−1) SPPs leads to the 
formation of a daughter vesicle, resulting in an increase of tension of the 
mother vesicle through the active tension induced by SPPs. Figure 2c 
shows that for a high passive membrane tension (λp ≈ 25 ± 9 μN m−1), 
no visible effects of the activity on the macroscopic vesicle shape  
are observed under conditions in which flaccid vesicles would show 
dendritic structures.

Shape fluctuations
In the fluctuating vesicle regime, membrane fluctuation amplitudes 
are strongly enhanced owing to SPPs compared to the passive case, as 
demonstrated in Fig. 3a for the experiments. This is reflected both in 
the larger amplitudes of undulation modes at low mode numbers cor-
responding to long wavelengths and in the full-width at half-maximum 
(FWHM) of the probability density function (PDF) P(Δr) of the distance 
Δr between the instantaneous membrane contour and its average posi-
tion (see inset of Fig. 3a). The simulation results in Fig. 3b show that the 
FWHM of the PDF increases roughly linearly with Pe. The fluctuations 
of active vesicles with a volume constraint (with reduced volume close 
to unity) are smaller than those of vesicles without a volume constraint 
(Fig. 3b), which can be traced back to the intrinsic membrane tension.

The undulation amplitudes a⟨ ⟩ℓ
2  in Fig. 3 show a very good agreement 

of experimental (Fig. 3a) and simulation (Figs. 3 c, d) results over the 
entire range of mode numbers ℓ. The spectra can be characterized by 
two power laws ℓα for small and large ℓ values. For passive vesicles  
with a volume constraint, we find an exponent of α ≈ −1 for small ℓ 
(tension-dominated regime) and α ≈ −3 for larger ℓ (bending-dominated 
regime), in agreement with earlier observations20. For active vesicles, 
the activity leads to a very pronounced enhancement of the small-ℓ 
modes, with exponent α ≈ −4, whereas the bending-dominated regime 
remains essentially unaffected. We also observe a similar activity- 
induced power-law regime in our two-dimensional vesicle model, which 
applies in the limit of strongly flattened vesicle shapes, as shown in 
Extended Data Fig. 6 (see also Supplementary Information). With 
increasing ϕ, the density and thickness of the particle layer increase, 
generating larger active forces on the membrane. This leads to an 
increase in the fluctuation amplitudes at large ϕ (see Fig. 3c, d), which 
is reflected in a more negative exponent α in the fluctuation spectrum 
(see Fig. 3d). However, this increase is moderate because it is opposed 
by a larger induced membrane tension. We note that the enhancement 
of activity-induced membrane undulations in our entirely synthetic 
system is in agreement with previously reported experiments for 
vesicles with light-activated membrane pumps24, bacteria encapsu-
lated25 in GUVs, and for red blood cells with ATP-dependent cytoskel-
etal activity26.

Our study shows how the interplay of local active forces, mem-
brane elasticity and viscosity can give rise to a plethora of novel 
vesicle shapes, which do not exist in equilibrium systems. Notably, 

further analysis of the strongly distorted vesicle shapes can provide a 
framework to study non-equilibrium thermodynamic and rheological 
responses of bilayer membranes when the membrane composition 
becomes more complex.
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Methods

Production of lipids and vesicles
All chemicals, unless otherwise specified, were used as received. 
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the fluorescent 
1,2-dioleoyl-sn-glycero-3- phosphoethanolamine-N-(lissamine rhoda-
mine B sulfonyl) (ammonium salt) (Liss Rhod PE; excitation wavelength 
561 nm), both in chloroform, were obtained from Avanti Polar Lipids 
(Alabaster, AL). Both non-fluorescently labelled DOPC and fluores-
cently labelled Liss Rhod PE were diluted in chloroform to 12 mg ml−1 
and 0.2 mg ml−1, respectively, and these stock solutions were stored at 
−20° C before use. To prepare the lipids in oil solution (LOS), 0.62 g and 
0.19 g of DOPC and Liss Rhod PE stock solution (15 mM and 0.15 mM of 
DOPC and Liss Rhod PE, respectively) were added to a glass vial (20 ml; 
Infochroma AG). The chloroform was then evaporated under a gentle 
N2 gas flow. The lipids were further dried at low pressure in a vacuum 
desiccator for 3 h to remove any traces of chloroform. Next, 4.4 g (5 ml) 
of paraffin oil (0.879 g cm−3; EGT Chemie AG) was added, and the lipids 
were dissolved overnight in an oven at 55° C.

Vesicles were prepared using the modified protocol of Natsume 
et al.27, as schematically depicted in Extended Data Fig. 1a. To maintain 
a density difference between the interior and exterior of the vesicles, 
the inner and outer aqueous solutions contained 100 mM of sucrose 
(Sigma-Aldrich) and 100 mM glucose (Apollo Scientific), respectively. 
The sucrose and glucose solutions were filtered before use with a 
0.2-μm Acrodisc filter (Pall Corporation). 600 μl of pre-heated LOS 
was then added to the 100 μl inner aqueous solution and the two phases 
were thoroughly mixed by tapping with a 200-μl micropipette for 2 min, 
giving rise to a water-in-oil emulsion that appeared turbid by eye. In a 
second 2-ml Eppendorf tube, a lipid-saturated water–oil interface was 
formed by depositing 200 μl of pre-heated LOS on top of 500 μL of 
100 mM glucose solution, the outer aqueous solution. Next, 90–100 μl 
of the top layer of the emulsion was transferred to the pre-equilibrated 
interface. The droplets were then transferred through the interface by 
centrifugation (Eppendorf, 5415D) of the Eppendorf tube for 2 min at 
200g. The lower centrifugation speed was found to minimize the pres-
ence of undesired lipid aggregates in the outer aqueous solution of the 
vesicle suspension. After centrifugation, the oil phase on top of the 
aqueous phase was carefully removed with a micropipette. The density 
difference between the inner and outer aqueous phases ensured that 
the vesicles had accumulated at the bottom of the tube. The resulting 
dispersion contained vesicles with sizes ranging between 10 and 80 μm. 
Extended Data Fig. 1b shows a confocal image of vesicles with a different 
tension. This method gives an array of vesicles with differing tension, 
enabling us to explore the effect of this parameter.

Although not mentioned in the literature, the solubility of lipids in 
different oils (for example, mineral and paraffin oil) at room tempera-
ture is known to be poor. Confocal microscope images confirmed the 
presence of fluorescent aggregates of lipids at room temperature. We 
found that the solubility of lipids in paraffin oil is good at an elevated 
temperature (55° C). Cooling the LOS before the formation of the 
vesicles resulted in the presence of non-uniformities in the vesicle 
membrane, such as random aggregates of lipids attached to the outer 
lipid layer of the vesicles. It is therefore essential to keep the LOS at 
55° C until use and to minimize the time required for the formation 
of vesicles.

Fabrication of self-propelling particles
We synthesized polystyrene particles that were sterically stabilized 
with poly-vinylpyrrolidone (molecular weight Mwt = 40,000 kg mol−1) 
and fluorescently labelled with rhodamine isothiocyanate, using the 
method of Song et al.28. After the synthesis, the particles were washed 
several times and re-dispersed into Milli-Q water. The particle size was 
1.0 μm with a size polydispersity of 5%, as determined using static light 
scattering and scanning electron microscopy.

To obtain half Pt-coated Janus PS particles, first a monolayer was 
deposited on a glass slide. Prior to the deposition, the glass slide was 
rinsed several times with acetone and ethanol, dried under compressed 
air, and subsequently plasma-cleaned for 30 s at high radio frequency 
level (Harrick Plasma). Then, 100 μl of dispersion of 0.5 wt% fluores-
cent PS particles was coated on the slide using a spin-coater (model 
WS-400B-6NPP Lite; Laurell Technologies) operating in a three-step 
program (30 s at 400 rpm, 90 s at 1,000 rpm, 20 s at 4,500 rpm). 
Platinum was then sputter-coated (Safematic, CCU-010 HV Com-
pact Coating) vertically over the monolayer to a final thickness of 
5–6 nm. Finally, particles were released from the glass slide by sonica-
tion (Bandelin, Sonorex) for approximately 2 min and collected by  
sedimentation29.

Next, particles were washed 3–4 times by sedimentation with deion-
ized water to remove small freely floating Pt flakes and unwanted clus-
ters of particles, and then the suspension was diluted to the desired 
concentration. Before the encapsulation of particles into vesicles, the 
Janus particles were tested for self-propulsion by diluting the particles 
in suspensions of varying hydrogen peroxide (BASF) concentrations 
(0.5–6.0 vol%); see Supplementary Information.

Encapsulation of SPPs
For a typical experiment, 50 μl of Janus particle dispersion of known 
concentration was mixed with 50 μl of 0.2 M sucrose solution in a 2-ml 
Eppendorf tube. The composition of this inner aqueous solution could 
be varied, but the final sucrose concentration was always maintained 
at 100 mM to prevent osmotic effects across the lipid membrane. Both 
passive colloids and Janus SPPs were successfully encapsulated into 
the vesicles, as shown in Extended Data Fig. 1c–f. A combined confo-
cal and bright-field microscope image reveals the two-faced nature 
of the coated particles (Extended Data Fig. 1e, f), with the fluorescent 
part appearing bright and the platinum-coated part appearing dark. 
We note that all the resulting vesicles may not get the same loading of 
Janus particles.

These encapsulated passive PS Janus particles neither showed a 
specific interaction with the lipid membrane nor did they induce a 
substantial change in the vesicle’s shape due to mere confinement of the 
particles, as shown in Extended Data Fig. 1c–f. Moreover, time-lapsed 
confocal microscope images confirm that the passive particles (that is, 
without H2O2) do not show any specific interactions with the membrane, 
thus inducing no shape change in vesicles. At low particle loadings, 
vesicles showed the expected thermal fluctuations of the membrane, 
of the same intensity as particle-free vesicles, whereas at very high 
particle loadings, thermal fluctuations were suppressed owing to steric 
interactions between the membrane and densely packed particles (see 
Extended Data Fig. 1g–i).

Imaging
We followed the particle dynamics and the membrane fluctuations 
using a confocal scanning laser microscope (Nikon Eclipse Ti-E inverted 
microscope with a VT-iSIM confocal scan head, Visitec), a Leica SP8 
(Leica Microsystems) confocal scanning laser microscope and a 
Nikon inverted fluorescence microscope equipped with a Hamamatsu 
ORCA-Flash4.0 CMOS camera and a high-numerical-aperture (NA) oil 
objective lens (60×, NA = 1.4; 100×, NA = 1.45). We acquired images with 
a frame rate in the range of 5–100 frames per second. We acquired a 
total of 2,500–4,000 images per vesicle for bending rigidity and tension 
measurements of vesicles by shape fluctuation analysis (see Methods 
section ‘Analysis of shape fluctuations of passive and active vesicles’). 
The brightness and contrast of the images were adjusted using Fiji 
imaging software (https://imagej.net/Fiji).

Analysis of shape fluctuations of passive and active vesicles
Vesicle shape fluctuation analysis is a standard technique to extract 
mechanical membrane properties such as bending rigidity and  

https://imagej.net/Fiji
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tension20,30,31. Fluctuation-mode amplitudes {aℓ} for two-dimensional 
(2D) sections of the vesicle contour, extracted from a contour analysis 
of experimental and simulation snapshots, are obtained by decompos-
ing the local membrane position r(θm) as
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where ℓ is the mode number and θm = 2πm/n. In thermal equilibrium, 
the fluctuation spectra for 2D sections of the vesicle contour are 
given by20,30–32
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where L = 2π⟨R⟩ is the section circumference and qℓ = ℓ/⟨R⟩ is the wave 
number.

For the analysis of the experimental data, a custom-made Matlab 
program was implemented to detect the membrane contour. First, 
all images are pre-processed to remove the background noise using a 
Matlab filter. Second, the membrane contour is detected by drawing a 
series of radial lines at angles θm, and the contour positions are deter-
mined by the intensity maximum along the radial lines using a threshold 
value (see Supplementary Information and Supplementary Fig. 1). 
The identified positions are transformed from Cartesian coordinates 
(xm, ym), m = 0,…, n − 1 into polar coordinates r(θm) with respect to the 
centre of mass of the contour. For the analysis of three-dimensional 
(3D) simulations, the values of r(θm) at the vesicle cross-section are 
obtained by local surface interpolation for angles θm within the section 
plane. For 2D simulations, the radial positions of membrane vertices 
are directly used in the fluctuation analysis.

For both simulations and experiments, we determine the average 
radius ⟨R⟩ of the 2D contours. The complex Fourier amplitudes are 
evaluated for the membrane position field (equation (1)) using the 
open-source FFTW library33 and averaged over different time frames. 
We note that this analysis of fluctuation modes is performed for both 
passive and active vesicles. We also quantify the deviations of vesi-
cle shape from a sphere by measuring the PDF P(Δr) of the distance 
Δr from its average shape for both passive and active vesicles; see 
insets in Fig. 3a, b. The PDFs of both passive and active vesicles show 
Gaussian-like distributions, in which active vesicles exhibit a larger 
standard deviation (that is, stronger membrane fluctuations) than 
passive vesicles.

We extract both the bending rigidity and the tension of the mem-
brane by fitting the experimental fluctuation spectra with equation (2), 
yielding a membrane tension of λp = 13 ± 7 nN m−1 and a bending rigid-
ity of κc = (18 ± 6)kBT for low-tension vesicles and λp = 25 ± 9 μN m−1, 
κc = (21 ± 5)kBT for high-tension vesicles.

Triangulated membrane model of a 3D vesicle
A lipid membrane is modelled by a dynamically triangulated network 
of Nv linked vertices19,34. The links are represented by a tethering poten-
tial34,35 expressed as a combination of the attractive (Uatt) and repulsive 
(Urep) parts

U r
k

l r
l r

r l

r l
( ) =

exp[1/( − )]
−

if >

0 if ≤
, (3)

c

att
b

0

max
c0

c0

















U r
k

r l
r l

r l

r l
( ) =

exp[1/( − )]
−

if <

0 if ≥
, (4)rep

b
c1

min
c1

c1

where kb is the bond stiffness, lmin and lmax are the minimum and maxi-
mum bond lengths, respectively, and lc1 and lc0 are the potential cutoff 
lengths. Thus, membrane vertices can move freely in the range [lc1, lc0].

The bending elasticity is represented by the Helfrich curvature 
energy36 as

∮U κ c A= 2 ¯ d , (5)
A
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2

where κc is the bending rigidity, c c c= ( + )/21 2   is the local mean curvature 
and A is the total membrane area. The bending energy is discretized 
on a triangulated network37,38 as
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where ci is the mean curvature at vertex i with area A/Nv; ni is the unit 
normal of the membrane at vertex i; σ σ r= (∑ )/4i j i ij ij( )   is the area of a dual 
cell of vertex i; j(i) stands for all neighbouring vertices linked to vertex 
i; and σij = rij(cotθ1 + cotθ2)/2 is the length of the bond in a dual lattice 
with angles θ1 and θ2 at the vertices opposite to the shared bond vec-
tor rij. More details about the discretization of the Helfrich curvature 
energy can be found in refs. 34,37,39.

Furthermore, local area conservation of the triangles in the vesicle 
discretization is imposed by a soft harmonic potential given by
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where k1, A′ = A/Nt and Ai are the local-area conservation coefficient, the 
desired and the instantaneous local areas, respectively. The sum runs 
over all Nt = 2(Nv – 2) triangles within the network. In several simula-
tions, a constraint on the total vesicle volume V has been employed as
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where kv is the volume constraint coefficient and V0 is the desired total 
volume.

The dynamics of membrane vertices is modelled by the Langevin 
equation,

̈ ̇m U γ γ k T t= − ∇ − + 2 ( ), (9)i i i itot m m Br r ξ

where m is the vertex mass, rï and ri̇ are the second and first derivatives 
of particle positions ri, ∇i is the spatial derivative at the position of 
vertex i and Utot is the sum of all interaction potentials. The friction 
coefficient γm mimics the embedding of the membrane into a viscous 
fluid through the free-draining approximation. ξi(t) is a Gaussian ran-
dom process with ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = Id δijδ(t − t′) that represents 
membrane thermal fluctuations (where Id is the d × d identity matrix and 
d is the dimension). The positions and velocities of all particles are 
integrated using the velocity Verlet algorithm40.

Membrane fluidity: dynamic triangulation
The membrane model described above with a fixed network connectiv-
ity does not include membrane fluidity, in which particles can diffuse 
within the membrane plane. To model membrane fluidity, the bond 
shared by each pair of adjacent triangles is flipped to connect the two 
previously unconnected vertices34,38. The flipping procedure is per-
formed with a time frequency of ω. During the flipping procedure, every 
bond in the membrane network is flipped with probability ψ, where the 
acceptance of bond flipping follows a Monte Carlo algorithm. In the 
Monte Carlo algorithm, changes in the tethering (that is, ΔUatt + ΔUrep) 
and local area (that is, ΔUloc.area) energies due to attempted bond 



flipping are computed. Bond flipping is accepted with a probability of  
exp[−(ΔUatt + ΔUrep + ΔUloc.area)/(kBT)] if energetically unfavourable and 
is always accepted if energetically favourable. We note that a change in 
the bending energy is omitted here for numerical efficiency, as bond 
flipping has a negligible effect on the local membrane curvature. The 
resulting membrane fluidity for selected parameters ω and ψ can be 
characterized by a 2D membrane viscosity; see refs. 35,41 for details. 
Extended Data Table 1 outlines the parameters for the 3D simulations.

Semiflexible-ring model of a 2D vesicle
A 2D cross-section (or a cut) of a vesicle is modelled by a semiflexible 
polymer ring. The ring is composed of Nr beads and characterized by 
a perimeter length of 2πR. The beads interact by bond, bending and 
area-constraint potentials; however, no repulsion between beads is 
applied. The bond energy controls the length of the polymer ring both 
locally and globally, and is represented by a harmonic bond potential
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Here, ks is the spring constant, ls = 2Rsin(π/Nr) is the equilibrium bond 
length, and ri is the bond vector from monomer i to i + 1. The spring 
constant ks is chosen sufficiently large, such that changes in the ring 
perimeter length are less than 5%.

The curvature (or bending) energy
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controls the membrane deformation in two dimensions. Here, κ′ is the 
2D bending rigidity and θi is the angle between bond vectors ri and ri+1. 
Finally, the area compression energy
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controls the area enclosed by the polymer ring, which mimics volume 
conservation of a vesicle in three dimensions. Here, kA is the bulk modu-
lus, and A and A0 are the instantaneous and the target ring areas, respec-
tively. Similarly to the 3D simulations, the dynamics of deformable rings 
is governed by the Langevin equation (9) in two dimensions. Extended 
Data Table 2 summarizes the parameters for the 2D simulations.

Model of SPPs
Self-propelled Janus particles are modelled by active Brownian particles 
(ABPs) without hydrodynamic interactions. Each ABP experiences a 
propulsive force fp, such that the average propulsive velocity of an ABP 
can be estimated as ⟨vp⟩ = fp/γp, where γp = 3πηfσ is the friction coefficient 
for ABPs with a diameter σ and ηf is the fluid dynamic viscosity. The 
propulsive force fpei is added to the Langevin dynamics in equation (9), 
where ei is the unit orientation vector of the i-th ABP. In addition, the 
orientation vector is subject to a random rotation following the equa-
tion42,43 e ζ ė = ×i i i , where ζi(t) is a Gaussian random process with 
⟨ζi(t)⟩ = 0 and ⟨ζi(t)ζj(t′)⟩ = 2DrId δijδ(t − t′) with rotational diffusion coef-
ficient Dr of an ABP. Dr is related to the ABP size σ and its translational 
diffusion Dt = kBT/γp as Dt = Drσ2/3. The activity of ABPs is characterized 
by the dimensionless Péclet number Pe = σvp/Dt.

ABPs repel each other with the repulsive part of the 12-6 Lennard–
Jones (LJ) potential given by
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where ϵ is the strength of the LJ potential and r c
p  is a characteristic length 

of repulsion. Thus, for ABPs we set r σ=c
p . Similarly, ABPs are also 

repelled by membrane vertices, and this interaction is described by 
the repulsive part of the LJ potential with r σ= 0.5c

p . The ABP parameters 
used in the simulations can be found in Extended Data Tables 1, 2.

Analytical prediction for the onset of tether formation
Tether formation from vesicles by externally pulled passive colloidal 
particles has been studied intensively21,22. We adopt here a simplified 
version of the theoretical description of this process to tether for-
mation by several active particles inside a vesicle. Tether formation 
occurs through the propulsion force fp exerted by a single particle or 
through the force

f βN f βN
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exerted by a cluster of Np,c particles on the membrane. Here, β ≤ 1 is  
the cluster cooperativity coefficient, which measures orientation  
alignment of the propulsion directions.

We consider a membrane with bending rigidity κc and spontaneous 
curvature c0. The propulsion force must overcome an elastic mem-
brane force
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to pull a tether of a diameter σcl, which represents the effective cluster 
size. Here, the membrane tension λ contains contributions from both 
the passive (equilibrium) tension of the vesicle, λp, and the tension 
induced by the particle activity, λa; that is, λ = λp + λa. For vesicles con-
taining many SPPs, tether formation can thus be enhanced by cluster 
formation and spontaneous membrane curvature, and be suppressed 
by membrane tension.

In the stationary state, a tether radius is predicted by minimizing the 
elastic energy of a vesicle with N tethers as
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with a fixed membrane area Atot = 4πR2 + 4πNRtLt and tether length 
Lt. We note that this radius is independent of the number of tethers.

To predict the boundary of tether formation in the state diagram by 
equation (15), estimates of the cluster size Np,c and the activity-induced 
tension are required. We estimate the average cluster size ⟨Np,c⟩ from 
the simulated distributions of cluster sizes illustrated in Extended Data 
Fig. 4a. Our simulation data for Pe = 100 show that

N αN⟨ ⟩ ≈ , (17)p,c p

where α is a monotonically increasing function of Pe, with α ≈ 1.9 × 10−2 
for Pe = 100. Then, the cluster size is assumed to be σcl = σ(⟨Np,c⟩/νcl)

1/3, 
where νcl = 0.65 represents the packing fraction of the cluster. The 
active membrane tension λa originates from the swim pressure that 
the particles exert on the membrane. It can be estimated through the 
Young–Laplace equation as
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where γ ≤ 1 is the active-tension weight, which takes into account  
that not all SPPs exert a force perpendicular to the membrane. As a 
result, the force balance implies a critical Péclet number for tether 
formation of
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Extended Data Figure 7 compares phase boundaries calculated using 
equation (19) for various values of λp, β and c0.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Encapsulation of colloids in giant DOPC vesicles.  
a, Schematic representation of the working principle of the production of  
giant vesicles by using the droplet transfer method. b–d, Confocal microscopy 
images showing the lipid membrane and particles in GUVs. Passive isotropic 
particles in low-tension vesicles (c) and high-tension giant vesicles (d). 
Combined confocal and bright-field micrographs of Janus particles inside the 

GUVs of high-tension (e) and low-tension (f) vesicles. g–i, Sequence of 
time-lapse combined 2D confocal and bright-field microscopy images showing 
no specific interactions between the particles and the lipid membrane; as a 
result, no vesicle shape change is observed. The particle volume fraction is 
ϕ ≈ 0.23. Scale bars are 10.0 μm.
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Extended Data Fig. 2 | Cooperative budding and tubular confinement of 
SPPs. Time-lapse of combined confocal and bright-field microscopy images 
showing the cooperative motion of SPPs inside the tether/channel of the lipid 
membrane. a–d, A flaccid vesicle first shows formation of a tether, which is 
transformed into a channel by multiple active particles. SPPs move into (a, b) 
and out of (c, d) the channel when they change propulsion direction. The inset 
shows a helical packing of active particles. The red arrow depicts the direction 
of the motion of the active particle into and out of the channel. The particle 

volume fraction is ≈3 × 10−3. e–j, Formation of a long (≈200 μm) tether extruded 
by a cluster of active particles (ten). Time-lapse images show the tubular 
confinement of a linear arrangement (inset of g) of individual active particles 
while the cluster of particles further pulls the membrane. h–j, The tether 
remains stable until its propulsion direction is reversed and the stored elastic 
energy counteracts the tether formation. As a result, the vesicle recovers its 
spherical shape. Scale bars are 10.0 μm.



Extended Data Fig. 3 | State diagram of various membrane structures for a 
vesicle with a volume constraint. a, Vesicle shapes for reduced volume v = 0.8 
as a function of Pe and ϕ. Similar to the simulated diagram in Fig. 2a for a vesicle 
without a volume constraint, three regimes exist: tethering (blue symbols), 
fluctuating (red symbols) and bola/prolate (green symbols) vesicle shapes.  
The points corresponding to the snapshots have black outlines. The boundary 
(black lines) of the tethering regime from theoretical calculations is the same 

as in Fig. 2a. Interestingly, tether formation for v = 0.8 is present at Pe = 100, 
whereas without a volume constraint, tethers and daughter vesicles are 
observed only for Pe > 100. b, Simulations of vesicles deformed by active 
particles for reduced volume v = 0.6 at Pe = 50. The occurrence of protrusions 
at Pe = 50 demonstrates that low reduced volumes favour the formation of 
tethers or daughter vesicles.
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Extended Data Fig. 4 | Sizes and forces of active particle clusters. a, Size 
distributions of clusters formed by active particles for various Pe and ϕ values 
from simulations with reduced volume v = 0.8. Larger clusters form at higher 
volume fractions of active particles and at larger Pe. The tails of the cluster size 
distributions follow a nearly exponential decay. b, Average cluster forces in the 

direction of the membrane for various Pe and ϕ values. The average force is a 
nearly linear function of the cluster size Np,c, such that it can be approximated 
as fp,c = βNp,cfp, where β is the cooperativity coefficient, which weakly depends 
on Pe. Linear fitting of the fp,c data results in β ≈ 0.3 for Pe = 25, β ≈ 0.4 for Pe = 50 
and β ≈ 0.54 for Pe = 100.
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Extended Data Fig. 5 | Vesicle morphologies at higher particle loadings. Vesicle topology changes are observed at high volume fraction of particles. Scale bars 
are 10.0 μm.
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Extended Data Fig. 6 | Fluctuations of 2D vesicles. a, b, Fluctuation spectra 
for vesicles with enclosed active particles of various Pe at area fraction ϕ′ = 0.12 
without (a) and with (b) an area constraint. The insets show the exponents 
obtained using power-law fits to ℓ−α, measured in the ranges 10 ≤ ℓ ≤ 17 for α1 and 
35 ≤ ℓ ≤ 50 for α2. c, d, Fluctuation spectra of active vesicles at Pe = 75 for various 

volume fractions ϕ′ without (c) and with (d) an area constraint. e, f, PDFs for 
fluctuations of the radial position of the vesicle contour around its average 
position for rings without (e) and with (f) an area constraint. The data denoted 
by ϕ′ = 0 are for the passive system.



Extended Data Fig. 7 | Theoretical phase diagrams for tether formation by 
active particles for two passive membrane tensions λp. a, Tether boundaries 
for various cluster cooperativities β. At low ϕ, equation (19) with ⟨Np,c⟩ = 1, β = 1 
and σcl = σ is employed, whereas at large ϕ, ⟨Np,c⟩ and σcl are functions of the 
number Np of active particles. In all cases, the active-tension weight is set to 

γ = 0.25. b, Tether boundaries for different spontaneous curvatures c0. Here, 
λp = 2 × 10−8 N m−1. Tethers are predicted to occur at high enough Pe and for small 
volume fractions ϕ of active particles. A non-zero spontaneous curvature of the 
membrane can substantially reduce the propulsion force needed to form a 
tether.
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Extended Data Table 1 | Parameters used in 3D simulations

A set of simulation parameters for 3D vesicle systems in both model and physical units.



Extended Data Table 2 | Parameters used in 2D simulations

A set of simulation parameters for 2D vesicle systems in both model and physical units.
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