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Abstract. We have implemented the computation of Coulomb interac-
tions in particle systems using the performance portable C++ framework
Kokkos. Coulomb interactions are evaluated with an Ewald-sum-based
solver, where the interactions are split into long- and short-range con-
tributions. The short-range contributions are calculated using pair-wise
contributions of particles while long-range interactions are calculated us-
ing Fourier sums. We evaluate the performance portability of the imple-
mentation on Intel CPUs, including Intel Xeon Phi, and Nvidia GPUs.

1 Introduction

The development of modern computer architectures shows a clear trend towards
increased complexity and heterogeneity. This increases the complexity of efficient
code development for multiple architectures that takes advantage of all available
components. GPUs, for example, are powerful processors available in cell phones
as well as supercomputers usually requiring their own programming model. As
a matter of fact GPUs have become more and more important as a source of
computing power in supercomputers, as can be seen in the increase of systems
using GPUs in the Top500 list [17] over the past ten years. While in November
2008 there was no system that included GPUs, in November 2013 there were
39 systems, and in the current list from November 2018 126 systems contained
GPUs. There are many ways of programming GPUs but unfortunately few are
even function portable without large changes to the source code [10]. This matter
becomes even worse if we want to write code for different kind of accelerators,
e.g., Intel’s Xeon Phi series.

In the domain of particle simulation methods of complex systems, electro-
static interactions represent a class of algorithms of high computational com-
plexity. This arises as a result of pair-wise interactions between all particles in
a system, which basically scale as O(N2). More efficient methods can be re-
duced to O(N log(N)) or even O(N) but come with a large implementation
effort [6,13,15,19,3]. In the present paper we consider the Ewald summation
method, which is suitable for particle systems in three dimensions under pe-
riodic boundary conditions and which can be optimised by proper choice of



paramters to O(N3/2) (essentially there are also formulations for one- or two-
dimensional systems, which we do not consider here). The basic structure of the
Ewald summation is sufficiently transparent and not too complex, allowing an
analysis of the operational count and providing insight into the procedure to
measure performance portability.

Performance portable approaches have been supported recently by the US
department of Energy and have resulted in frameworks like Kokkos [5,1] or
Raja [4,2], which offer C++ software abstractions for code execution and mem-
ory management.

In this paper, we compare the performance of an Ewald sum implemented
in Kokkos on various Intel CPUs including Intel Xeon Phi Knights Landing and
Nvidia GPUs. We start with a quick overview of Kokkos and its main features
(Sec. 3). Then we introduce the problem of a system of electric charges with peri-
odic boundary conditions and show how the Ewald sum can be used to calculate
it efficiently (Sec. 2). In Sec. 4 we establish a base line for the achievable perfor-
mance. Afterwards we present our implementation and show our performance
benchmarks (Sec. 5).

2 Calculating Long-range Interactions with Periodic

Boundaries

When computing energies and forces in particle systems composed of N particles,
which are dominated by long range interactions, each particle i gets partial
contributions of each other particle j ∈ [1, N ]. Long range interactions arise
when the potential energy function φ(r) decays slower than 1/rd, where d is the
dimension of the system and r is the distance from a point in space to a particle.
Here, we consider electrostatic potentials created by point charges, for which the
potential energy at a point r in free space is given by φ(r) = qj/|r − rj | which
leads to a total electrostatic energy U = 1/2

∑
i,j qiφ(rij). When simulating

bulk systems, the number of particles in a simulation is always small, compared
with laboratory samples and therefore, in order to avoid surface effects, periodic
boundary conditions are often applied [9] and the electrostatic potential energy
at particle position ri can formally be written as

φ(ri) =
∑

n

†
N∑

j=1

qj
‖rij + nL‖

2

where n ∈ Z
3 is a so called lattice vector, L the length of the (cubic) system

and ”†” indicates that j 6= i for ‖n‖
2
= 0. This sum cannot be evaluated by a

straightforward summation rule, since (i) the first sum is formally over an infinite
number of lattice vectors; and (ii) the lattice sum is conditionally convergent,
i.e., the result depends on the order of summation. Ewald proposed [7] a way to
overcome the conditional convergence by subdividing the expression into a short
range and a long range part, which is introduced via a splitting function, f(r),
which decays to zero within a finite range. A function u(r) = 1/r can then be



rewritten as u(r) = f(r)/r + (1 − f(r))/r. The first term is short range (since
it decays to zero), while the second one is long range (since asymptotically it
decays as 1/r). This reformulation has the advantage that it can be transformed
into an unconditionally convergent sum for a proper choice of f . Originally,
f(r) = erfc(αr) was chosen, where α is a splitting parameter, controlling the
width of the short range part. The long range part can be elegantly computed
in Fourier space, which leads to [9]

φ(ri) =

N∑

j=1

∑

n

†qj
erfc(α‖rij + nL‖)

‖rij + nL‖
2

+
4π

L

∑

|k|6=0

N∑

j=1

qj
|k|2 e

−
|k|2

4α2 eikrij −qi
2α√
π

(1)

The last term corresponds to a correction for particle i, which also appears
in the k-space summation (second term). For practical computations the infi-
nite sums (over n and k) have to be approximated. For large arguments erfc(x)
decays as a Gaussian, as it does the k-space summation. Therefore, both sums
can be limited to a finite range of values, which still allows for control of ap-
proximation error. In most cases, due to the spherical symmetry of erfc(x) and
a fast decay, the first sum can be restricted to contributions within a spher-
ical region of radius Rc. Furthermore, it can be shown that via a proper set
of parameters [8,16], the computational complexity is reduced from O(N2) to
O(N3/2).

3 Kokkos at a Glance

Kokkos uses C++ to provide an abstraction of parallel algorithms, their ex-
ecution and memory spaces. The basic algorithms include parallel_for, paral-
lel_reduce, and parallel_scan. Each of these algorithms can be executed in dif-
ferent execution spaces, for example, using an OpenMP execution space on the
CPU or a CUDA execution space on an Nvidia GPU.

CPUs and GPUs use different approaches to vectorization. CPUs use a sin-
gle instruction multiple data paradigm. GPUs use a single instruction multiple
threads paradigm. These two approaches lead to different preferred memory lay-
outs. To accommodate different memory layouts and memory locations Kokkos
introduces so called Views.

A View is a thin wrapper around the data. It knows its dimensionality, its
sizes, its layout, and its memory space. Kokkos::View<double∗> v(n);, for ex-
ample, initializes a one dimensional array of doubles of size n in the default
execution space, which can be set at compile time. A View can be mirrored on
the host side. In GPU computing it is not uncommon to initialize data on the
host, transfer them to the GPU, perform computations, and transfer the results
back. A mirrored View can do just that. Any transfer between a View and its
mirror needs to be done explicitly using Kokkos::deep_copy. The code shown in
Listing 1.1 creates a 1d View and a host mirror of it, fills the mirrored View with
random numbers, copies the numbers to the View, sums them up in parallel, and
gets the result.



Listing 1.1. Reduction using Kokkos. This program can be executed using OpenMP
on a CPU or on a GPU. Second level curly brackets are needed to ensure deallocation
of views before calling Kokkos::finalize.

#include <random>
#include <Kokkos_Core . hpp>

int main ( int argc , char∗ argv [ ] ) {
Kokkos : : i n i t i a l i z e ( argc , argv ) ;
{

std : : default_random_engine generator ;
s td : : un i fo rm_rea l_di s t r ibut ion<double> uniform_dist (0 , 1) ;
auto uniform = [&]{ return uniform_dist ( generator ) ; } ;
int n = 1024 ;
double sum = 0 ;
// Create a view in the d e f a u l t e xecu t i on space
Kokkos : : View<double∗> v( "v" , n) ;
// Create a mirror o f v in hos t memory
auto h_v = Kokkos : : create_mirror_view (v ) ;
for ( int i = 0 ; i < n ; ++i ) h_v( i ) = uniform ( ) ;
// Copy data from hos t to dev i c e i f necessary
Kokkos : : deep_copy (v , h_v) ;
// Pa r a l l e l r educ t i on in d e f a u l t e xecu t i on space
Kokkos : : pa ra l l e l_reduce (n , KOKKOS_LAMBDA( int i , double&

localSum ) {
localSum += v( i ) ;

} , sum) ;
std : : cout << "The␣ average ␣ value ␣ o f ␣ the ␣ e lements ␣ o f ␣v␣ i s ␣"

<< (sum / n) << " .\ n" ;
}
Kokkos : : f i n a l i z e ( ) ;

}

If the program is compiled for OpenMP, the mirror view becomes an alias
and the deep copy does not have to do anything, but if the program is compiled
for CUDA, the original View lives on the GPU and the deep copy transfers the
data from the CPU to the GPU.

On GPUs neighboring threads should access consecutive memory. Thread i
should access a[i] and thread i+1 a[i+1], but on a CPU this prevents vec-

torization and can introduce an unnecessary dependency. If a[i] and a[i+1]

belong to the same cache line and thread i writes to a[i] it invalidates the entire
cache line. If thread i+1 wants to access a[i+1] it first needs to read the entire
cache line again. This effect is called false sharing [18]. So for CPUs a single
thread should deal with a chunk of data. The effects due to different memory
layout requirements become even more pronounced for multi-dimensional data.
Note that in Kokkos, the left-most index is assumed to be the one over which
parallelization is performed.



4 Achievable Performance

To determine how well our implementation takes advantage of the available
hardware, we need to know what the hardware is capable of. Theoretical peak
performance is not a good measure of the performance that is achievable for a
particular algorithm. If the calculation is dominated by square roots or exponen-
tials, for example, it does not matter how quickly a compute device can calculate
multiplications and additions. To estimate the number of cycles needed for the
Ewald summation (Eq. 1), we use vendor information and mini benchmarks.

We first initialize an array of elements to some range of values and then
loop over this array applying the operation in question one to a few times. The
idea is to access data from cache or registers to minimize the effect of mem-
ory bandwidth and latency. We check that vectorized versions of the functions
are used where available. The important operations are multiplication, division,
square roots, exponentials (exp), sine (sin) and cosine (cos), and the error func-
tion (erfc). Table 1 lists the duration of an operation in cycles and its inverse
(throughput per cycle) for each device. For operations for which we found infor-
mation from the vendors, the values are listed in parenthesis as well.

Table 1. Average duration in cycles per core or streaming multiprocessor (SMs) for
additions, multiplication, (fused) multiply-add, division, square roots, exponentials, sin
and cos, and the error function. All values are approximate. The number of cycles is
calculated as the number of cycles per vector instruction divided by the width of the
vector. A division using AVX512 instruction on Skylake-X, for example, takes 16 cycles
and does 8 division in parallel during those 16 cycles. We therefore have 2 cycles per
division. The numbers in parenthesis are from [11,14]. The line for Skylake (zmm)
shows results when the compiler was asked for a high usage of zmm registers. On the
CPU architectures, we used a single core for the measurements. On the GPUs, we used
all SMs and divided the throughput by the number of SMs.

add mul (f)ma div sqrt exp sin cos erfc

Skylake ( 1

16
) ( 1

16
) ( 1

16
) 2.0 (2) 3.06 (3) 12.5 11.58 12.63 16.77

Skylake (zmm) ( 1

16
) ( 1

16
) ( 1

16
) 0.96 1.20 6.32 6.51 6.76 9.25

Haswell ( 1
8
) ( 1

8
) ( 1

8
) 3.97 3.97 2.66 2.84 3.35 5.85

KNL ( 1

16
) ( 1

16
) ( 1

16
) 1.12 2.04 3.82 6.94 7.09 9.20

Kepler ( 1

64
) ( 1

64
) ( 1

64
) 0.15 0.21 0.37 0.55 0.55 1.25

Volta ( 1

32
) ( 1

32
) ( 1

32
) 0.30 0.31 0.57 0.84 0.84 2.04

In the following sections we look at the number of instructions performed by
the Ewald solver.

4.1 Ewald Solver

The Ewald solver consists of a k-space (Fourier space) and a real-space part. Let
N be the number of particles in the central cell and Nk be the number of wave
vectors.



Real-space Contributions To calculate a single particle-particle interaction
energy, we first need to calculate the distance between the particles (c.f. first
term of Eq. 1). In our implementation the central cell is large enough that we
do not need to add additional image cells and thus do not have contributions of
the type nL. A distance calculation consists of 3 subtraction, 2 multiply-adds, 1
multiplication and a square root (sqrt). For the particles within a cutoff radius
defined by a tunable parameter α, we then calculate the error function (erfc) of
the distance, divide by it, and multiply the result by the charge of particle j.
All these partial results need to be added up for each particle i and the result
is multiplied by the charge of particle i and a constant. Finally, the potential
energy of all particles needs to be summed up to get the total energy. This leads
to a total of N2((3 sub + 2 multiply-add + 1 mul + 1 sqrt) + Vf (2 mul + 1
div + 1 erfc)) + Nmultiply-adds, where Vf is the fraction of the total volume
within the cutoff radius. For Skylake (zmm) this becomes

(1.58 + 10.34Vf )N
2 +N/16 (2)

cycles. On a Volta GPU we need

(0.50 + 2.40Vf )N
2 +N/32 (3)

cycles.

K-space Contributions The second term of Eq. 1 contains 2 nested sums.
The outer sum is over Nk = (2kint +1)3, where kint is the integer ceiling of kmax

and kmax is determined by the required precision and the factor α mentioned in
the Sec. 2. It requires the calculation of the square of the length of the k-vector
(2 multiply-add, 1 multiplication), which is used twice. Only wave vectors with
a length less than kmax are included for the remaining calculations. There are
3 divisions, 7 multiplication, 2 multiply-adds, and 1 exponential. The argument
of the inner sum includes the dot product between k and ri(2 multiply-add, 1
multiplication). The exponential of the complex argument is calculated using 1
sin and 1 cos. This is then multiplied by qi and summed up (1 multiply-add).

The argument of the inner sum is executed NNkVf times, where Vf =
4π
3
k3

max

Nk
. In

total this becomes Nk(3 (sub,multiply-add,mul) + Vf (9 (sub,multiply-add,mul)
+ 3 div + 1 exp + N(sin + cos + 3 (sub,multiply-add,mul))). For Skylake (zmm)
this becomes

(0.19 + (9.76 + 13.46N)Vf )Nk (4)

cycles. On a Volta GPU we need

(0.09 + (1.75 + 1.77N)Vf )Nk (5)

cycles.



5 Results

The program was benchmarked on five different architectures: three different
Intel CPUs and two different Nvidia GPUs. The benchmarks were performed
on the JURECA and JUWELS clusters at the Jülich Supercomputing Centre
[12]. On JURECA the tests were run on i) a CPU compute node, equipped with
two Intel Xeon E5-2680 v3 Haswell CPUs, ii) a GPU node equipped with two
NVIDIA K80 (Kepler) cards, of which only a single one was used, and iii) a
booster node consisting of a single Xeon-Phi 7250-F Knights Landing (KNL)
processor. The nodes used on JUWELS are i) a CPU node containing two Intel
Xeon Platinum 8168 Skylake-X (SKX) processors and ii) a GPU node with four
NVIDIA V100 (Volta) cards, of which again only one is used for the benchmarks.

For each benchmark the same source code was used, containing only minor
adjustments concerning the used ExecutionSpace and MemorySpace, depending
on the use of i) a GPU architecture and ii) the use of the host_mirror mechanic
of Kokkos. The possibility to change the memory layout is also included. For the
CPU benchmark runs a complete node was used, i.e., two processers of Haswell
and Skylake and one KNL processor, while for the GPU benchmarks only a
single GPU was used, i.e., ’half’ a K80 and a single Volta V100 card. Therefore
the presented runtimes are per-node runtimes, not per processor runtimes.

For the benchmarks a cubic NaCl crystal was simulated, for which the exact
solution to the Coulomb potential is known, so that the accuracy of the computed
solution could be compared to the exact solution. During the benchmark the
size of the crystal was increased by increasing the edge length L of the crystal,
thereby increasing the number of particles by L3. Due to the nature of the
system, the contribution of the Fourier-space is much smaller than the real-space
contribution, due to screening effects. This does not decrease the computational
demand of the algorithm if a given accuracy has to be achieved.

In the optimal case the Ewald solver shows an complexity of O(N3/2), which
depends on an optimal choice of the splitting parameter α, the real-space cut-off
radius rc and the k-space cut-off kmax. Due to the implementation of the real-
space computation, which is basically a direct solver of complexity O(N2), in
our results it can be seen that for larger systems sizes the resulting runtimes
behave more like O(N2) than O(N3/2) (see Fig. 1). The figure also shows the
expected relations of runtime to architecture, as the more powerful architectures
shows faster runtimes than the less powerful ones. Another detail that can be
seen is that the GPUs show the same scaling behavior as the CPUs, with the
Volta card resulting in the shortest runtimes of all architectures.

In order to achieve some more insight into the performance portability be-
tween the same types of architectures, i.e., CPU-CPU, GPU-GPU, and across
types of architectures, i.e., CPU-GPU, we consider the peak-performance nor-
malized runtime on the architectures. The runtime can be expressed by the
number of operations divided by a fraction γ, where γ is a measure for the prox-
imity to maximum performance, trun = Ninstruc

γPpeak
; γ ∈ [0, 1]. This can be rewritten

as







see that required hard copies of data between devices where handled in a very
efficient way on GPU architectures independent of the GPU model.

We can do a quantitative analysis of the performance based on the results
from Sec. 4. As an example, for N = 1283 we obtain an optimal runtime of
56.44 s based on Eqns. 2 and 4 for the Skylake system. The measured runtime is
206.74 s. This corresponds to a relative performance γSKX of 0.27. For Volta we
get an optimal runtime of 18.61 s and a measured runtime of 71.56 s resulting
in a relative performance γSKX of 0.26. While the scaling with the nominal
peak performance Ppeak (Fig. 2) suggests that γVolta is larger than γSKX, above
analysis shows that they are nearly equal.

6 Discussion and Conclusions

The performed benchmarks indicate that it is possible to write a performance
portable Ewald solver code with Kokkos that can utilize different architectures
without the requirement of intensive code adaptations for each of the architec-
tures. Of course it might be possible to write more efficient code specialized for
certain architectures, but this kind of code would lose the advantage of versatil-
ity concerning architectures it could usefully run on. The quantitative analysis
shows that the expected runtime for Skylake is three times longer than for Volta,
which our measurement confirm. On the other hand, the nominal peak perfor-
mance predicts only a factor of two leading to the discrepancy with Fig. 2.

It is noticeable that the performance of the KNL is worse than the perfor-
mance of the other architectures when using smaller number of particles. This
could be related to a massive overhead in the administration of threads, as each
thread might not be fully utilized due to the smaller amount of work for each
thread. For larger system sizes, it can be seen that the KNL behaves comparable
to the other architectures, with regard to the scaling behavior.

Implementing the Ewald solver with Kokkos was slightly more difficult than
implementing the code with OpenMP, as the correct usage of the corresponding
parallel_for and parallel_reduce constructs is a bit more intricate than the usage
of OpenMP pragmas. The advantage is that they can be used on GPUs as well
if certain restrictions regarding memory access are obeyed. As can be seen from
our benchmarks this can be done with nearly no loss of relative performance on
the different architectures.

Our first results indicate that implementations of algorithms based on Kokkos
on a given architecture allows a simplified way of porting to other architectures
without a redesign of code (e.g., porting an efficient code for GPUs from stan-
dard C++ to CUDA). This allows for an easier transition to other (future)
architectures and to investigate and utilise this hardware in an earlier stage of
their availability.

For the future it needs to be examined, if the O(N3/2) complexity can be
achieved for the Kokkos implementation, e.g., by implementing nearest-neighbor
lists for the real-space contribution computation. Also, it would be beneficial to
implement more advanced Coulomb solvers, like PEM, P3M or the fast multipole



method, with Kokkos to see if the solvers can also be used performance portable.
With regard to Kokkos features, it will also be investigated how large the impact
is of choosing an unsuitable memory layout for a given architecture.
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