Kokkos Implementation of an Ewald Coulomb Solver and
Analysis of Performance Portability

Rene Halver®, Jan H. Meinke®, Godehard Sutmann®®

@ Julich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum
Jiilich, 52425 Jilich, Germany
bJCAMS, Ruhr-Universitit Bochum, 44801 Bochum, Germany

Abstract

We have implemented the computation of Coulomb interactions in particle sys-
tems using the performance portable C++ framework Kokkos. For the com-
putation of the electrostatic interactions in particle systems we used an Ewald
summation. This implementation we consider as a basis for a performance
portability study. As target architectures we used Intel CPUs, including In-
tel Xeon Phi, as well as Nvidia GPUs. To provide a measure for performance
portability we compute the number of needed operations and required cycles,
i.e. runtime, and compare these with the measured runtime. Results indicate a
similar quality of performance portability on all investigated architectures.

1. Introduction

The development of modern computer architectures shows a clear trend to-
wards increased complexity and heterogeneity. This increases the complexity of
efficient code development for multiple architectures that takes advantage of all
available components. GPUs, for example, are powerful processors available in
cell phones as well as supercomputers usually requiring their own programming
model. As a matter of fact GPUs have become more and more important as a
source of computing power in supercomputers, as can be seen in the increase
of systems using GPUs in the Top500 list [1] over the past ten years. While
in November 2008 there was no system that included GPUs, in November 2013
there were 39 systems, and in the current list from November 2018 126 systems
contained GPUs. There are many ways of programming GPUs but unfortu-
nately few are even function portable without large changes to the source code
[2]. This matter becomes even worse if we want to write code for different kind
of accelerators, e.g., Intel’s Xeon Phi series.

In the domain of particle simulation methods of complex systems, electro-
static interactions represent a class of algorithms of high computational com-

Email addresses: r.halver@fz-juelich.de (Rene Halver ), j.meinke@fz-juelich.de
(Jan H. Meinke ), g.sutmann@fz-juelich.de (Godehard Sutmann )

Preprint submitted to Elsevier December 5, 2019



plexity. This arises as a result of pair-wise interactions between all particles
in a system, which basically scale as ¢(N?). More efficient methods can be
reduced to O(N log(N)) or even O (N) but come with a large implementation
effort [3, 4, 5, 6, 7]. In the present paper we consider the Ewald summation
method, which is suitable for particle systems in three dimensions under pe-
riodic boundary conditions and which can be optimised by proper choice of
paramters to &(N3/2) (essentially there are also formulations for one- or two-
dimensional systems, which we do not consider here). The basic structure of
the Ewald summation is sufficiently transparent and not too complex, allowing
an analysis of the operational count and providing insight into the procedure to
measure performance portability.

Performance portable approaches have recently attracted attention [8], where
Raja [9, 10] and Kokkos [11, 12] are frameworks, offering a set of C++ software
abstractions for code execution and memory management.

In this paper, we compare the performance of an Ewald sum implemented
in Kokkos on a variety of architectures including Intel Xeon Phi Knights Land-
ing and Nvidia GPUs. We first introduce the problem of a system of electric
charges with periodic boundary conditions and show how the Ewald sum can be
efficiently used for its calculation (Sec. 2). Then we provide a quick overview of
Kokkos and its main features (Sec. 3). In Sec. 4 we establish a base line for the
achievable performance. Afterwards we present our implementation and show
our performance benchmarks (Sec. 5).

2. Calculating Long-range Interactions with Periodic Boundaries

When computing energies and forces in particle systems composed of N
particles, which are dominated by long range interactions, each particle i gets
partial contributions of each other particle j € [1, N]. Long range interactions
arise when the potential energy function ¢(r) decays slower than 1/7¢, where d
is the dimension of the system and r is the distance from a point in space to
a particle. Here, we consider electrostatic potentials created by point charges,
for which the potential energy at a point 7 in free space is given by ¢(r) =
qj/|r — rj| which leads to a total electrostatic energy U = 1/237, . qip(rij).
When simulating bulk systems, the number of particles in a simulation is always
small, compared with laboratory samples and therefore, in order to avoid surface
effects, periodic boundary conditions are often applied [13] and the electrostatic
potential energy at particle position r; can formally be written as

Z Z ||fu+nL||2

where n € 73 is a so called lattice vector, L the length of the (cubic) system
and 71" indicates that j # ¢ for ||n||, = 0. This sum cannot be evaluated by a
straightforward summation rule, since (i) the first sum is formally over an infinite
number of lattice vectors; and (ii) the lattice sum is conditionally convergent,



i.e., the result depends on the order of summation. Ewald proposed [14] a way
to overcome the conditional convergence by subdividing the expression into a
short range and a long range part, which is introduced via a splitting function,
f(r), which decays to zero within a finite range. A function u(r) = 1/r can then
be rewritten as u(r) = f(r)/r+(1— f(r))/r. The first term is short range (since
it decays to zero), while the second one is long range (since asymptotically it
decays as 1/r). This reformulation has the advantage that it can be transformed
into an unconditionally convergent sum for a proper choice of f. Originally,
f(r) = erfc(ar) was chosen, where « is a splitting parameter, controlling the
width of the short range part. The long range part can be elegantly computed
in Fourier space, which leads to [13]

i, erfe(alry +nL|) SU ey 20
ZZ rs; + Ll ZZ\ wee e ay M

j=1 n |k|7503 1

The last term corresponds to a correction for particle i, which also appears
in the k-space summation (second term). For practical computations the infi-
nite sums (over n and k) have to be approximated. For large arguments erfc(x)
decays as a Gaussian, as it does the k-space summation. Therefore, both sums
can be limited to a finite range of values, which still allows for control of ap-
proximation error. In most cases, due to the spherical symmetry of erfc(x) and
a fast decay, the first sum can be restricted to contributions within a spherical
region of radius R,. Furthermore, it can be shown that via a proper set of
parameters [15, 16|, the computational complexity is reduced from O(N?) to
O(N3/2).

3. Kokkos at a Glance

Kokkos uses C++ to provide an abstraction of parallel algorithms, their
execution and memory spaces. The basic algorithms include parallel_for,
parallel_reduce, and parallel_scan. Each of these algorithms can be exe-
cuted in different execution spaces, for example, using an OpenMP execution
space on the CPU or a CUDA execution space on an Nvidia GPU.

CPUs and GPUs use different approaches to vectorization. CPUs use a
single instruction multiple data (SIMD) paradigm. GPUs use a single instruc-
tion multiple threads paradigm (SIMT). These two approaches lead to different
preferred memory layouts.

On GPUs neighboring threads should access consecutive memory. Thread
i should access a[i] and thread i+1 a[i+1], but on a CPU this pattern pre-
vents vectorization and can introduce an unnecessary dependency. If a[i] and
a[i+1] belong to the same cache line and thread i writes to a[i] it invalidates
the entire cache line. If thread i+1 wants to access a[i+1] it first needs to
read the entire cache line again. This effect is called false sharing [17].
CPUs a single thread should deal with a chunk of data. The effects due to



different memory layout requirements become even more pronounced for multi-
dimensional data. Note that in Kokkos, the left-most index is assumed to be
the one over which parallelization is performed. This needs to be taken into
account for the implementation of the algorithms and the memory layout.

To accommodate different memory layouts and memory locations Kokkos
introduces Views. A View is a thin wrapper around the data. It knows its
dimensionality, its sizes, its layout, and its memory space.

Kokkos :: View<doublex> v(n);

for example, initializes a one dimensional array of doubles of size n in the default
execution space, which can be set at compile time. A View can be mirrored on
the host side. In GPU computing it is not uncommon to initialize data on the
host, transfer them to the GPU, perform computations on the GPU, and transfer
the results back. A mirrored View can do just that. Any transfer between a
View and its mirror needs to be done explicitly using Kokkos: :deep_copy.

Views are not limited to a single dimension. Multidimensional Views can
be declared with a combination fixed (compile time) and variable (run time)
dimensions. An array of 3d coordinates could, e.g., be specified as

Kokkos :: View<double*[3] > r(n);

The code shown in Listing 1 creates a 1d View and a host mirror of it, fills the
mirrored View with random numbers, copies the numbers to the View, sums
them up in parallel, and gets the result.

If the program is compiled for OpenMP, the mirror View becomes an alias
and the deep copy does not have to do anything, but if the program is compiled
for CUDA, the original View lives on the GPU and the deep copy transfers the
data from the CPU to the GPU.

The developer is not limited to the default execution space but execution and
memory spaces have to been known at compile time. Views can take a memory
space and algorithms an execution space as argument. If the parallel_reduce
in Listing 1 should always execute on an Nvidia GPU, we would change the defi-
nition of v to include the CUDA memory space and the call to parallel_reduce
would include the CUDA execution space as can been seen in Listing 2

4. Achievable Performance

To determine how well our implementation takes advantage of the available
hardware, we need to know what the hardware is capable of. Theoretical float-
ing point peak performance is not a good measure of the performance that is
achievable for a particular algorithm. The performance of many applications is
limited by the available memory bandwidth. For these the floating point peak
performance is obviously irrelevant, but even if the application is compute bound
the mix of operations is crucial. If the calculation is dominated by square roots



Listing 1: Reduction using Kokkos. This program can be executed using OpenMP on a CPU
or on a GPU. Second level curly brackets are needed to ensure deallocation of views before
calling Kokkos::finalize.

#include <random>

#include <Kokkos Core.hpp>

int main(int argc, charx argv|[]){

Kokkos:: initialize (argc, argv);

{
std :: default random engine generator;
std :: uniform real distribution<double> uniform dist

(0, 1);
auto uniform = [&]|{return uniform dist(generator);};
int n = 1024;
double sum = 0;
// Create a view in the default memory space
Kokkos :: View<doublex> v("v", n);
// Create a mirror of v in host memory
auto h v = Kokkos::create mirror view(v);
for(int i = 0; 1 < n; ++i) h_v(i) = uniform();
// Copy data from host to device if mecessary
Kokkos::deep copy(v, h v);
// Parallel reduction in default execution space
Kokkos :: parallel reduce(n, KOKKOS TAMBDA(int i,
double& localSum){
localSum += v(i);
}, sum);
std :: cout << "The_average_value_of_the_elements_of_v_
is." << (sum / n) << ".\n";
}
Kokkos:: finalize () ;

}



Listing 2: Explicit memory and execution spaces. Changes compared to Listing 1 to always
use CUDA for the reduction. Kokkos::CudaSpace has to be specefied in the definition of the
View and Kokkos: :Cuda has to be passed to the Kokkos: :RangePolicy, which also needs to be
given explicitely.

// Create a view in the CUDA memory space
Kokkos :: View<doublex, Kokkos:: CudaSpace> v("v", n);

// Parallel reduction in CUDA execution space

Kokkos:: parallel reduce (Kokkos:: RangePolicy <Kokkos ::
CUDA>(n) , KOKKOS TAMBDA(int i, double& localSum){
localSum += v(i);

}, sum);

or exponentials, for example, it does not matter how quickly a compute device
can calculate multiplications and additions. To estimate the minimum number
of cycles needed for the Ewald summation (Eq. 1), we use vendor information
and mini benchmarks for the set of operations given below.

In these benchmarks we first initialize an array of elements to some range
of values and then loop over this array applying the operation in question one
to a few times. The idea is to access data from cache or registers to minimize
the effect of memory bandwidth and latency. We check that vectorized ver-
sions of the functions are used where available. The important operations are
multiplication, division, square roots, exponentials (exp), sine (sin) and cosine
(cos), and the error function (erfc). Table 1 lists the duration of an operation in
cycles for each device. For operations for which we found information from the
vendors, the values are listed in parenthesis as well. In the following sections
we look at the number of instructions performed by the Ewald solver.

4.1. Ewald Solver

The Ewald solver consists of a k-space (Fourier space) and a real-space part
(cmp. Eq. 1). Let N be the number of particles in the central cell and Ny be
the number of wave vectors.

4.1.1. Real-space Contributions

To calculate a single particle-particle interaction energy, we first need to
calculate the distance between the particles (c.f. first term of Eq. 1). In our
implementation the central cell is large enough that we do not need to add
additional image cells and thus do not have contributions of the type nL. A
distance calculation consists of 3 subtraction, 2 multiply-adds, 1 multiplication
and a square root (sqrt). For the particles within a cutoff radius defined by a
tunable parameter «, we then calculate the error function (erfc) of the distance,
divide by it, and multiply the result by the charge of particle j. All these partial



Table 1: Average duration in cycles per core or streaming multiprocessor (SMs) for additions,
multiplication, (fused) multiply-add, division, square roots, exponentials, sin and cos, and
the error function. All values are approximate. The number of cycles is calculated as the
number of cycles per vector instruction divided by the width of the vector. A division using
AVX512 instruction on Skylake-X (SKX), for example, takes 16 cycles and does 8 division
in parallel during those 16 cycles. We therefore have 2 cycles per division. The numbers in
parenthesis are from [18, 19]. The line for SKXZ shows results when the compiler was asked
for a high usage of zmm registers. On the CPU architectures, we used a single core for the
measurements. On the GPUs, we used all SMs and divided the throughput by the number of
SMs.

| add [ mul [ (Hma] div | sqrt [exp | sin | cos [ erfc |
SKX | (35) | () [ (35) [20(2) [ 306 (3) | 125 | 11.58 [ 12.63 | 16.77
SKXZ [ (35) | (§5) | (55) | 0.96 120 | 632 ] 651 | 6.76 | 9.25
Haswelll (3) | (3) [ (5) 3.97 3.97 | 266 | 284 | 335 | 5.85
KNL | (55) | (§5) | (G5) | 112 2.04 | 382 694 | 7.09 | 9.20
Kepler | (z7) | (57) | (zp) | 0.15 021 [ 037 055 | 055 | 1.25
Volta | (35) | (35) | (55) | 030 031 | 057 ] 084 | 084 | 2.04

Table 2: Minimum number of cycles needed. This table lists the minimum number of cycles
needed to perform the real- and k-space calculations of the Ewald sum for each used architec-
ture based on a set of mini benchmarks. N is the number of charges. V} is the fraction of the
volume of the base cell that is within the cut off radius of the real space calculation. Ny is
the number of wave vectors and Vj, is volume fraction of the k-space used for the inner sum.

’ Arch. \ Real space calculation \ K-Space Calculation ‘

Haswell | (4.72+ 10.07V;)N2 + N/8 [ (0.38 + (15.70 + 6.57N) V1) Ny,

Skylake-X | (1.58 +10.34V;)N2 + N/16 | (0.19 + (9.76 + 13.46N)V;;) Nj,

Kepler (0.30 + 1.43V;)N2 + N/64 | (0.047 + (0.30 + 1.43N) V) Ny,
Volta (0.50 + 2.40V;)N? + N/32 (0.50 + 2.40V,) N2 + N/32
KNL (2.415+9.39V;)N? + N/16 | (2.415 + 9.39V;;)N? + N/16

results need to be added up for each particle ¢ and the result is multiplied by the
charge of particle ¢ and a constant. Finally, the potential energy of all particles
needs to be summed up to get the total energy. The total amount of operations
#, is then found as

#,. = N?x (3 x (sub)+ 2 x (multiply-add) 4+ 1 x (mul) + 1 x (sqrt)
+Vp x (2 x mul 4+ 1 x (div) + 1 x (erfc))) + N x (multiply-add)

where V; is the fraction of the total volume within the cutoff radius. The resul-
ting number of cycles can be found in the central column of Table 2.

4.1.2. K-space Contributions

The second term of Eq. 1 contains 2 nested sums. The outer sum is over
Ni. = (2kine +1)3, where ki is the integer ceiling of kpax and kpax is determined
by the required precision and the factor a mentioned in the Sec. 2. It requires



runtime [s]

0.01
32768 65536 131072 262144 524288 1048576 2097152
number of particles

Figure 1: Comparison of the runtime for different systems sizes on all tested architectures.
For reference two guide lines showing a complexity of O(N3/2) and O(N?) are shown.

the calculation of the square of the length of the k-vector (2 multiply-add, 1
multiplication), which is used twice. Only wave vectors with a length less than
kmax are included for the remaining calculations. There are 3 divisions, 7 mul-
tiplication, 2 multiply-adds, and 1 exponential. The argument of the inner sum
includes the dot product between k and r;(2 multiply-add, 1 multiplication).
The exponential of the complex argument is calculated using 1 sin and 1 cos.
This is then multiplied by ¢; and summed up (1 multiply-add). The argument

of the inner sum is executed NN, Vs times, where Vi, = %. In total the
number of operations #j becomes
#r = Ni x (3 (sub,multiply-add,mul) + Vi x (9 x (sub,multiply-add,mul)

+3 x (div) + 1 x (exp) + N x (1 x (sin) + 1 x (cos)
+3 x (sub,multiply-add,mul))))

The formulas to determine the amount of cycles required to compute the k-space
contribution on each architecture are presented in the right column of Table 2.

5. Results

The program was benchmarked on five different architectures: three different
Intel CPUs and two different Nvidia GPUs. The benchmarks were performed
on the JURECA and JUWELS clusters at the Jiilich Supercomputing Centre
[20]. On JURECA the tests were run on i) a CPU compute node, equipped
with two Intel Xeon E5-2680 v3 Haswell CPUs, ii) a GPU node equipped with



Table 3: Runtime in seconds and performance portability for calculating the electrostatic
potential using the Ewald sum for Intel Haswell (HSW), Skylake-X (SKX), Xeon Phi (KNL),
Nvidia Kepler (K80), and Volta (V100). The performance portability is calculated according
to Eq. 3 for each problem size based on the reached percentage of the achievable performance
as determined in Sec. 4. The last column provides the performance portability factor according
to Pennycook|21] for the given problem size.

[N [ HSW [ SKX | KNL | K80 [ V100 | P(a,p) |
32 | 0.349 | 0.143 | 2.378 | 0.453 | 0.073 | 0.060
43 | 2682 | 0.737 | 3.634 | 2482 | 0.409 | 0.190
64 | 14.06 | 3.300 | 7.966 | 10.32 | 1.536 | 0.286
80 | 52.63 | 11.79 | 23.57 | 36.94 | 5053 | 0.309
96 | 154.55 | 34.16 | 62.70 | 105.05 | 13.84 | 0.322
112 | 400.97 | 89.40 | 153.95 | 257.54 | 33.24 | 0.320
128 | 885.55 | 208.5 | 339.28 | 559.47 | 71.62 | 0.320
160 | 3371.65 | 774.5 | 1301 | 2129.78 | 287.19 | 0.314
102 | 9987.50 | 2270 | 3910 | 6265.08 | 837.75 | 0.316

two NVIDIA K80 (Kepler) cards, of which only a single one was used, and iii)
a booster node consisting of a single Xeon-Phi 7250-F Knights Landing (KNL)
processor. The nodes used on JUWELS are i) a CPU node containing two Intel
Xeon Platinum 8168 Skylake-X (SKX) processors and ii) a GPU node with four
NVIDIA V100 (Volta) cards, of which again only one is used for the benchmarks.

For each benchmark the same source code was used, containing only minor
adjustments concerning the used EzecutionSpace and MemorySpace, depending
on the use of i) a GPU architecture and ii) the use of the host mirror mechanic
of Kokkos. The possibility to change the memory layout is also included. For the
CPU benchmark runs a complete node was used, i.e., two processers of Haswell
and Skylake and one KNL processor, while for the GPU benchmarks only a
single GPU was used, i.e., 'half’ a K80 and a single Volta V100 card. Therefore
the presented runtimes are per-node runtimes, not per processor runtimes.

For the benchmarks a cubic NaCl crystal was simulated, for which the ex-
act solution to the Coulomb potential is known, so that the accuracy of the
computed solution could be compared to the exact solution. During the bench-
mark the size of the crystal was increased by increasing the edge length L of
the crystal, thereby increasing the number of particles as L3. Due to the nature
of the system, the contribution of the Fourier-space is much smaller than the
real-space contribution, due to screening effects. This does not decrease the
computational demand of the algorithm if a given accuracy has to be achieved.

In the optimal case the Ewald solver shows an complexity of O(N?3/2), which
depends on an optimal choice of the splitting parameter «, the real-space cut-
off radius r. and the k-space cut-off ky,.x. Due to the implementation of the
real-space computation, which is basically a direct solver of complexity O(N?),
in our results it can be seen that for larger systems sizes the resulting runtimes



10000 | - E

1000

=3
=3

=)

Haswell —+—
Kepler —%—
KNL
Skylake E
Volta
ON'S) — —
ONY) — - -

normalized number of instructions [TFlops]

1 1 1 1 1 1
32768 65536 131072 262144 524288 1048576 2097152

number of particles

Figure 2: Runtime on each architecture normalized by the nominal peak performance of the
architecture. If the achieved performance on two architectures relative to the nominal peak
performance is equal, the lines should be overlapping.

behave more like O(N?) than O(N?3/2) (see Fig. 1). The figure also shows the
expected relations of runtime to architecture, as the more powerful architectures
shows faster runtimes than the less powerful ones. Another detail that can be
seen is that the GPUs show the same scaling behavior as the CPUs, with the
Volta card resulting in the shortest runtimes of all architectures.

In order to achieve some more insight into the performance portability be-
tween the same types of architectures, i.e., CPU-CPU, GPU-GPU, and across
types of architectures, i.e., CPU-GPU, we first consider the peak-performance
normalized runtime on the architectures since the nominal peak performance is
often used for such comparisons. The runtime can be expressed by the number
of operations divided by a fraction 7y, where y is a measure for the proximity to
maximum performance, tpy, = %; ~v € [0,1]. This can be rewritten as

trun 4 Ppeak = Ninstruct/fy- (2)

To compare the performance portability of the implementation the runtimes
need to be compared between the different architectures. Assuming that on
each architecture a comparable number of instructions are executed for a given
simulation, one can assume that the product of runtime ¢.,, and the nominal
peak performance Ppeaic Will be equal across all platforms, if the reached relative
performance v is equal (equation 2).

For a qualitative comparison based on this thought, the runtimes are multi-
plied with the nominal peak performance for each of the architectures given in
table 4. All peak performance data is with regard to double precision computa-

10



Table 4: Nominal peak performance data for each of the architectures used in the benchmarks

Architecture Note Nominal peak performance
[TFlops/sec]
Haswell complete node 0.9
(two processors)
Kepler single GPU 0.945
(half a K80 card)
KNL one processor 3.05
Skylake complete node 4.1
(two processors)
Volta single GPU 7.8

tions, which are used in the code and are necessary to get the precision we want.
The resulting plot (Fig. 2) shows that the normalized number of instructions
computed for each of the different architectures is similar. It can also be seen
that the lines for the same type of architecture (CPU, GPU) are nearly iden-
tical to each other, indicating on a qualitative level, that the achieved relative
performance is similar within a given type of architecture (with the exception
of KNL).

No significant difference could be measured between the variants of the code
using the Kokkos host mirror functionality and using the option with unified
memory. While this was expected on CPU architectures, it was interesting to
see that required hard copies of data between devices were handled in a very
efficient way on GPU architectures independent of the GPU model.

We can can now compare the reached performance to the achievable per-
formance for the different architectures. If the code is performance portable,
the reached percentage of the achievable performance should be similar across
the different architectures. Fig. 3 shows that the percentages of the achievabel
performance are close together, indicating that the code indeed is performance
portable.

Our estimate of the achievable performance assumes full vectorization, pipelin-
ing, and the usage of all compute resources. For small systems this will not be
true, which explains the much smaller percentage achieved.

The reason the percentage of achieved performance decreases for large L on
Skylake-X needs to be investigated. It could be related to changing frequencies
due to thermal reasons or cache effects, which are not covered by our perfor-
mance model. On average the reached fraction across all platforms is ~ 0.26,
including the smaller systems that show a lesser fraction of achieved performance
than the larger ones. Pennycook et al. [21] suggest the harmonic mean over the
performance values for a given set of platforms H as measure for performance
portability:

Pla,p H) = <0 0
ZieH ei(a,p)

11



45 T T T T T T T

35 - E

30

25 - k|

20 - E

= Haswell —+—
Kepler —%—
KNL
SKX
Volta

reached relative performance [%)]

0 1 1 1 1 1 1 1
32768 65536 131072 262144 524288 1.04858x10°8 2.09715x108 4.1943x108

# charges

Figure 3: Reached fraction of the achievable performance for Intel Skylake-X (SKX), Intel
Xeon Phi (KNL), and Nvidia Volta.

where ¢ is an application that solves problem p. In our case e;(a,p) is the
reached percentage of the achievable performance for a given L.

It is interesting that while the results in Fig. 2 suggest that the fraction of
the peak performance achieved on Volta is better than on CPUs, the findings
in Fig. 3 indicate that the code utilizes the CPU architecture just as well as
the GPU one. In fact, the program takes better advantage of Haswell and KNL
than of Volta and SKX. Nevertheless the total runtime is smaller on Volta then
on Skylake as can be seen in Fig. 1.

6. Discussion and Conclusions

The performed benchmarks indicate that it is possible to write a performance
portable Ewald solver code with Kokkos that can utilize different architectures
without the requirement of intensive code adaptations for each of the architec-
tures. Of course it might be possible to write more efficient code specialized
for certain architectures, but this kind of code would lose the advantage of
versatility concerning architectures it could usefully run on. The quantitative
analysis shows that the expected runtime for Skylake is three times longer than
for Volta, which our measurement confirm. On the other hand, the nominal
peak performance predicts only a factor of two leading to the discrepancy with
Fig. 2.

It is noticeable that the performance of the KNL is worse than the perfor-
mance of the other architectures when using smaller number of particles. This
could be related to a massive overhead in the administration of threads, as each

12



thread might not be fully utilized due to the smaller amount of work for each
thread. For larger system sizes, it can be seen that the KNL behaves comparable
to the other architectures, with regard to the scaling behavior.

Implementing the Ewald solver with Kokkos was slightly more difficult than
implementing the code with OpenMP, as the correct usage of the corresponding
parallel  for and parallel reduce constructs is a bit more intricate than the usage
of OpenMP pragmas. The advantage is that they can be used on GPUs as well
if certain restrictions regarding memory access are obeyed. As can be seen from
our benchmarks this can be done with nearly no loss of relative performance on
the different architectures.

Our first results indicate that implementations of algorithms based on Kokkos
on a given architecture allows a simplified way of porting to other architectures
without a redesign of code (e.g., porting an efficient code for GPUs from stan-
dard C++ to CUDA). This allows for an easier transition to other (future)
architectures and to investigate and utilise this hardware in an earlier stage of
their availability.

For the future it needs to be examined, if the O(N3/2) complexity can be
achieved for the Kokkos implementation, e.g., by implementing nearest-neighbor
lists for the real-space contribution computation. Also, it would be beneficial to
implement more advanced Coulomb solvers, like PME, P3M or the fast multipole
method, with Kokkos to see if the solvers can also be used performance portable.
With regard to Kokkos features, it will also be investigated how large the impact
is of choosing an unsuitable memory layout for a given architecture.

Another thing that needs to be investigated, is the question, if the perfor-
mance portability of Kokkos can be maintained, while providing an inter-node
parallelization with MPI. This will be a major issue in connection with modular
HPC systems, consisting of CPU nodes and GPU nodes, in order to utilize them
to the best possible degree.

[1] Top500, TOP500 Supercomputer Sites, https://www.top500.org/.

[2] R. Halver, W. Homberg, G. Sutmann, Function portability of molecular
dynamics on heterogeneous parallel architectures with OpenCL, J Super-
comput 74 (4) (2018) 1522-1533. doi:10.1007/s11227-017-2232-2.

[3] M. Deserno, C. Holm, How to mesh up Ewald sums. I. A theoretical and
numerical comparison of various particle mesh routines, J. Chem. Phys.
109 (1998) 7678.

[4] B. Luty, M. Davis, I. Tironi, W. van Gunsteren, A comparison of particle-
particle, particle-mesh and Ewald methods for calculating electrostatic in-
teractions in periodic molecular systems, Mol. Sim. 14 (1994) 11-20.

[5] E. L. Pollock, J. Glosli, Comments on P3M, FMM, and the Ewald method
for large periodic Coulombic systems, Comp. Phys. Comm. 95 (1996) 93—
110.

13



[6] A.Y. Toukmaji, J. A. B. Jr., Ewald summation techniques in perspective:
a survey, Comp. Phys. Comm. 95 (1996) 73-92.

[7] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel,
R. Halver, 1. Kabadshow, F. Gé&hler, F. Heber, J. Iseringhausen, M. Hof-
mann, M. Pippig, D. Potts, G. Sutmann, Comparison of scalable fast meth-
ods for long-range interactions, Phys. Rev. E 88 (2013) 063308.

[8] https://performanceportability.org/perfport/frameworks.

[9] D. Beckingsale, R. Hornung, T. Scogland, A. Vargas, Performance portable
¢++ programming with raja, in: Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, PPoPP '19, ACM, New
York, NY, USA, 2019, pp. 455-456. doi:10.1145/3293883.3302577.

URL http://doi.acm.org/10.1145/3293883.3302577

[10] https://github.com/LLNL/RAJAPerf.

[11] H. Carter Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling many-
core performance portability through polymorphic memory access patterns,
Journal of Parallel and Distributed Computing 74 (12) (2014) 3202-3216.
doi:10.1016//j.jpdc.2014.07.003.

[12] https://github.com/kokkos/kokkos.

[13] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algo-
rithms to Applications, 2nd Edition, Academic Press, San Diego, 2001.

[14] P. P. Ewald, Die Berechnung optischer und elektrostatischer
Gitterpotentiale, ~Annalen der Physik 369 (3) (1921) 253-287.
doi:10.1002/andp.19213690304.

[15] D. Fincham, Optimisation of the Ewald Sum for Large Systems, Molecular
Simulation 13 (1) (1994) 1-9. doi:10.1080/08927029408022180.

[16] G. Sutmann, Molecular Dynamics - Vision and Reality, in: J. Grotendorst,
S. Bliigel, John von Neumann-Institut fiir Computing (Eds.), Computa-
tional Nanoscience: Do It Yourself! Winter School, 14 - 22 February 2006,
Forschungszentrum Jiilich, Germany ; Lecture Notes, no. 31 in NIC Series,
NIC-Secretariat, Research Centre Jiilich, Jiilich, 2006, oCLC: 181556319.

[17] J. Torrellas, H. S. Lam, J. L. Hennessy, False sharing and spatial locality
in multiprocessor caches, IEEE Transactions on Computers 43 (6) (1994)
651-663. doi:10.1109/12.286299.

[18] Intel, Intel® 64 and IA-32 Architectures Optimization Reference Manual.

[19] Nvidia, CUDA C Programming Guide, http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html (Mar. 2019).

14



[20] JSC, Forschungszentrum Jiilich - Jiilich Supercomputing Centre (JSC),
https://www.fz-juelich.de/ias/jsc/ (2019).

[21] S. J. Pennycook, J. D. Sewall, V. W. Lee, A Metric for Performance Porta-
bility, arXiv:1611.07409 [cs]arXiv:1611.07409.

15



