001     885417
005     20240625095032.0
024 7 _ |a 10.1103/PhysRevB.102.035113
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/26678
|2 Handle
024 7 _ |a altmetric:85570561
|2 altmetric
024 7 _ |a WOS:000545539900006
|2 WOS
037 _ _ |a FZJ-2020-03814
082 _ _ |a 530
100 1 _ |a Zhang, Xue-Jing
|0 P:(DE-Juel1)176544
|b 0
|u fzj
245 _ _ |a Origin of orbital ordering in YTiO 3 and LaTiO 3
260 _ _ |a Woodbury, NY
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619158742_14006
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The origin of orbital order in correlated transition-metal compounds is strongly debated. For the paradigmatic $e_g$ systems $KCuF_3$ and $LaMnO_3$, it has been shown that the electronic Kugel'-Khomskii mechanism alone is not sufficient to drive the orbital-ordering transition up to the high temperatures at which it is experimentally observed. In the case of $t_{2g}$ compounds, however, the role played by the superexchange interaction remains unclear. Here we investigate this question for two representative systems, the $3dt^1_{2g}$ Mott insulators $LaTiO_3$ and $YTiO_3$. We show that the Kugel'-Khomskii superexchange transition temperature $T_{KK}$ is unexpectedly large, comparable to the value for the $e^3_g$ fluoride $KCuF_3$. By deriving the general form of the orbital superexchange Hamiltonian for the $t^1_{2g}$ configuration, we show that the $GdFeO_3$-type distortion plays a key part in enhancing $T_{KK}$ to about 300 K. Still, orbital ordering above 300 K can be ascribed only to the presence of a static crystal-field splitting.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 1
536 _ _ |a Charge-transfer effects in multi-orbital correlated systems (jiff46_20191101)
|0 G:(DE-Juel1)jiff46_20191101
|c jiff46_20191101
|f Charge-transfer effects in multi-orbital correlated systems
|x 2
542 _ _ |i 2020-07-06
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Koch, Erik
|0 P:(DE-Juel1)130763
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Pavarini, Eva
|0 P:(DE-Juel1)130881
|b 2
|u fzj
773 1 8 |a 10.1103/physrevb.102.035113
|b American Physical Society (APS)
|d 2020-07-06
|n 3
|p 035113
|3 journal-article
|2 Crossref
|t Physical Review B
|v 102
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.102.035113
|g Vol. 102, no. 3, p. 035113
|0 PERI:(DE-600)2844160-6
|n 3
|p 035113
|t Physical review / B
|v 102
|y 2020
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/885417/files/PhysRevB.102.035113.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885417/files/oot2g.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885417
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
|q extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176544
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130881
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-24
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-24
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
999 C 5 |a 10.1063/1.1984590
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.176403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/7/1/188
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.266405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 K. I. Kugel'
|y 1973
|2 Crossref
|o K. I. Kugel' 1973
999 C 5 |1 K. I. Kugel'
|y 1973
|2 Crossref
|o K. I. Kugel' 1973
999 C 5 |a 10.1103/PhysRevLett.104.086402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.035124
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.195141
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.054107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.100.045116
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.224402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.70.1039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9781139096782
|1 D. I. Khomskii
|2 Crossref
|9 -- missing cx lookup --
|y 2014
999 C 5 |a 10.1143/JPSJ.68.2783
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.70.3475
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0921-4526(99)00950-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jpcs.2004.08.010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.054426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.184419
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.257207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.3950
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.060401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.056401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.167202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.167203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.245108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.70.1777
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.70.2872
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.73.1833
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0010-4655(90)90187-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.12847
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.5368
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.83.349
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-4596(79)90127-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/6/1/154
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.214431
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. M. Oleś
|y 2017
|2 Crossref
|t The Physics of Correlated Insulators, Metals, and Superconductors
|o A. M. Oleś The Physics of Correlated Insulators, Metals, and Superconductors 2017
999 C 5 |a 10.12693/APhysPolA.118.212
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.087206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.035107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.69.1982
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21