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The origin of orbital order in correlated transition-metal compounds is strongly debated. For
the paradigmatic ey systems KCuF3 and LaMnQOsg, it has been shown that the electronic Kugel-
Khomskii mechanism alone is not sufficient to drive the orbital-ordering transition up to the high
temperatures at which it is experimentally observed. In the case of t2; compounds, however, the
role played by the super-exchange interaction remains unclear. Here we investigate this question
for two representative systems, the 3d t%g Mott insulators LaTiOs and YTiOs. We show that the
Kugel-Khomskii super-exchange transition temperature, Tkk, is unexpectedly large, comparable to
the value for the eg fluoride KCuF3. By deriving the general form of the orbital super-exchange
Hamiltonian for the t%g configuration, we show that the GdFeOs-type distortion plays a key part
in enhancing Tkk to about 300 K. Still, orbital ordering above 300 K can only be ascribed to the

presence of a static crystal-field splitting.
I. INTRODUCTION

Orbital-order in strongly-correlated materials can arise
from different types of microscopic mechanisms.! The
first is the classical Jahn-Teller instability; in this sce-
nario, the electron-lattice coupling produces lattice dis-
tortions which remove the orbital degeneracy. The
crystal-field splitting arising via such distortions can lead
to large differences in orbital occupations and regular
patterns of mostly occupied orbitals, i.e, to orbital or-
dering. Remarkably, even if the crystal-field splitting is
relatively small in comparison to the bandwidth, the or-
bital polarization can be large, since it is strongly en-
hanced by the Coulomb interaction,>* making orbital
ordering stable even at very high temperatures. The sec-
ond mechanism that can lead to orbital ordering phenom-
ena is the electronic super-exchange introduced by Kugel
and Khomskii.> In this mechanism the ordering arises
even in the absence of crystal-field splitting and is due
to the orbital super-exchange interaction. The strength
of such a purely electronic mechanism has been investi-
gated in detail for the case of the paradigmatic e, systems
KCuF3 and LaMnOs. It has been shown that the associ-
ated transition temperature, Tkk, is too small to explain
the presence of orbital ordering well above 1000 K468
as observed experimentally. In the case of KCuFs it was
shown that even the electron-phonon coupling alone does
not explain experimental findings; instead, a new mech-
anism was identified, in which the Born-Mayer repulsion
plays a key role.? This new mechanism is in particular rel-
evant for ionic systems. Finally, for layered perovskites
yet another mechanism, the orbital super-exchange field,
was shown to be at work in addition.'°

In this complex scenario, it remains yet to be estab-
lished how strong super-exchange effects are in to, mate-
rials. Representative systems are the 3d t3 4 orthorhombic
perovskites LaTiO3 and YTiOs, two strongly-correlated
insulators with GdFeOs-type structure (see Fig. 1).12:13
Both compounds are paramagnetic insulators in a wide
temperature range. For YTiOgs the magnetic transition

FIG. 1: (Color online) The GdFeOs-type perovskite struc-
ture'' of LaTiO3. The pseudocubic axes are x ~ (a4 b)/2,
y ~ (b—a)/2, z ~ c. Point symmetry transformations with
respect to site Tiy are: (& <> §) for site Tia, (2 +> —2) for site
Tis and (2 < §),(2 <> —2) for site Tia.

temperature to the ferromagnetic ground state is as low
as 40 K. Orbital ordering has been detected via various
experimental techniques ranging from nuclear magnetic
resonance,'® polarized neutron diffraction,'®'® x-ray
magnetic diffraction,'” joint refinement method,® reso-
nant x-ray scattering,'® and soft x-ray linear dichroism.?°
For LaTiOg3 the situation is more complex. In t3, per-
ovskites the gain in super-exchange energy from static
Jahn-Teller orbital ordering is expected to be much
smaller than in e, systems, where orbitals are bond ori-
ented. It was therefore suggested that in LaTiOgs the
proximity to the metal-insulator transition could make
the (dynamical) orbital liquid state stable instead.?!
Later, however, evidence in favor of orbital ordering ac-
cumulated, as it became clear that, although the Jahn-



Teller distortion is very small, a sizable static crystal-
field splitting is generated by the GdFeOgs-type distor-
tion and the associated deformations of the cubic cation
cage.?322728 While it is now accepted that LaTiOj is or-
bitally ordered, it still remains to be established what role
the super-exchange interaction actually plays in the gen-
esis of such ordering, which, for LaTiO3 as for YTiOsg,
persists well above the magnetic ordering temperature.
This is what we investigate and clarify in this work.

The paper is organized as follows. In Section I we
describe the model and method used. The technique
we adopt is based on the dynamical mean-field theory
(DMFT). It is augmented with the approach we estab-
lished in Ref. 4 for studying super-exchange driven orbital
ordering transitions. In Section IT we present the main
results. We calculate the order parameter, the orbital po-
larization p(T), as a function of temperature. We obtain
the transition temperature Tkk, which marks the onset of
the orbitally ordered phase for the pure super-exchange
mechanism, and identify the most occupied natural or-
bital. We show that in both LaTiO3z and YTiOs3 the crit-
ical temperature Tk is surprisingly large with respect to
some early assumptions. We find Txk ~ 300 K, compa-
rable to the case of the eg perovskite KCuF3. We show
that this is mostly due to the GdFeOs-type distortion.
Remarkably, our results show that the super-exchange
interaction alone favors a very similar orbital ordering
in YTiO3 and LaTiOs. There is, however, an important
difference between the two compounds. In YTiO3, where
the GdFeOs-like distortion is larger, the super-exchange
interaction co-operates with the static crystal-field split-
ting in determining the orbital which is actually occu-
pied; the most occupied natural orbital obtained without
crystal-field splitting is very close to the one obtained in
the presence of the static crystal-field splitting and ob-
served experimentally. In contrast, for LaTiOg3, a system
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FIG. 2: (Color online) Light gray: LDA band structure of
YTiOs (left) and LaTiOs (right). Dark lines: to4 bands from
the Wannier orbitals, on top of the original LDA bands.

FIG. 3: (Color online) The t24-like Wannier basis for YTiO3
(top) and LaTiOs (bottom).

with a much smaller GdFeOgs-like distortion, it substan-
tially differs, i.e., the super-exchange interaction partially
competes with the static crystal-field splitting. The con-
clusions are summarized in Section III. In the Appendix
we present the general orbital super-exchange Hamilto-
nian for the tég configuration, used in the discussion pre-
sented in Section II.

II. MODEL AND METHOD

In the first step we perform local density approxima-
tion (LDA) calculations using the full-potential linearized
augmented plane-wave method as implemented in the
WIEN2K code.?® The LDA bands are shown in Fig. 2.
Next we construct localized tp4-like Wannier functions
using projectors and, when needed, the maximal localiza-
tion procedure.! The Wannier orbitals obtained in this
way for the experimental structures are shown in Fig. 3.
Finally, we build the associated t5, Hubbard model with
full local Coulomb interaction
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Here ti;f;n, is the LDA hopping integral from orbital
m on site ¢ to orbital m’ on site i’. The operator
¢ (Cimo) creates (annihilates) an electron with spin
o in Wannier state m at site i, and nime = €,y Cimo-
The parameters U and J are the direct and exchange

screened Coulomb interaction; we use U = 5 eV and
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FIG. 4: (Color online) Super-exchange driven orbital-ordering transition in YTiO3z (left) and LaTiOsz (right). The figures
show the orbital polarization p(T') as a function of temperature. Darker symbols correspond to lower temperatures. For each

temperature, the most occupied state, |, ), = sindcos ¢ |zz), + cos ¥ |zy), + sin¥sin ¢ |yz)

1, is indicated on the sphere in

the inset, where the two dark lines correspond to ¥ = 90° (equatorial) and ¢ = 0° (vertical). Empty circles: LDA+DMFT
results with full crystal-field splitting. Filled circles: results in the zero crystal-field splitting limit. Triangles: lowest energy
crystal-field orbital from LDA calculations for the experimental structure measured at 2 K and 293 K for YTiOs (crystal
structures from Refs. 22 and 29), 8 K, 293 K, and 747 K for LaTiOs (crystal structures from Refs. 22 and 11).

J = 0.64 eV, values which have been established in pre-
vious works.?332 As quantum impurity solver we adopt
the generalized hybridization-expansion continuous-time
quantum Monte Carlo (CT-HYB QMC) method?? in the
implementation presented in Ref. 8. In order to de-
scribe the orbital-ordering transition we adopt the ap-
proach we have introduced in Ref. 4 and used with suc-
cess for several representative e, systems.4’6’7’10 To ex-
tend this to the case of the tég configuration we de-
fine the orbital polarization (the order parameter) as
p(T) = n1 — (ng + n3)/2, where n; are the occupations
of the natural orbitals, ordered such that n; > n;y;. In
the high-temperature para-orbital phase p(T") ~ 0, while
in the T"— 0 limit, i.e., well inside the orbitally ordered
phase, p(T) — 1. For the experimental structure, we find
that the orbital polarization is close to its maximum value
already at temperatures as high as 1000 K, and changes
little with temperature. In the orbitally ordered phase we
identify the most occupied natural orbital at site Ti; as
the state |0, @) = |9, p); = sind cos p |zz),+cos ¥ |zy), +
sindsinp|yz);. The corresponding occupied orbitals
at sites 2, 3, and 4 can be obtained using point-group
symmetries: [, p), = [9,90° —¢),, while |¥,¢), =
|—19, ), and |9, ¢), = |-0,90° — ¢),. The conclusions
so far are in line with established LDA4+DMFT results
for these materials.?3

In order to extract the transition temperature Tkg
for the transition due to super-exchange only, we cal-
culate p(T) for idealized structures. These are obtained
by progressively decreasing the effects of the distortions
on the on-site energies. We have already shown in the
past®6-810 that this approach reliably determines the up-
per bound for the critical temperature Tk, the tempera-

ture which determines the on-set of the super-exchange-
driven orbital ordering transition. The results are dis-
cussed in the next section.

III. RESULTS

The main results obtained via LDA4+DMFT calcula-
tions are shown in Figs. 4 and 5. Let us start from
Fig. 4. Here we display the order parameter, p(T"), and,
on the sphere, the angles ¥, ¢ identifying the most oc-
cupied natural orbital, |¢, ). These quantities are plot-
ted as a function of temperature, both for YTiO3z and
LaTiOg. The figure shows that in the presence of crystal-
field splitting (empty circles) orbital-ordering p(T) ~ 1
persists till very high temperatures. This means that, if
the structure does not change, no order-to-disorder tran-
sition occurs till basically melting temperature. Also, for
both systems the most occupied natural orbital, |9, ¢),
is essentially temperature-independent. This can be seen
from the positions of the empty symbols on the spheres
in Fig. 4. Furthermore |49, ¢) is close to the correspond-
ing lowest energy crystal-field state, |Jcr, pcr), shown
in the top panels of Fig. 5. The different orbital ordering
obtained in the two systems is in good agreement with
experiments®® and can explain also the fact that LaTiOs,
at low temperatures, orders anti-ferromagnetically, while
YTiO3 ferromagnetically.>® So far, the conclusions are
similar to those for e, materials. %8 In order to quantify
the strength of the super-exchange interaction, however,
we have to analyze the results obtained in the limit of zero
crystal-field splitting (filled circles). Fig. 4 shows that
the super-exchange transition occurs at Txx ~ 300 K.



This is a remarkably large value given that the titanates
are ta, systems, comparable? to the one for the e, sys-
tem KCuF3 — although still about half the value for the
more covalent system LaMnQO3.5® There is another im-
portant result emphasized in the figure. For YTiO3, well
below the transition temperature Tkk, the most occu-
pied natural orbital |¥kk, pkk) is identified by the an-
gles Ik ~ 60° and gk ~ 90°. We therefore obtain
[YkK, xK) ~ |YcF, pcr); this can be seen comparing
the orbitals shown in the upper and bottom panels of
Fig. 5, left column. For LaTiOj the situation is quite
different; the natural orbital |¥kk, ¥xK) is close to the
one we find for YTiOg, although with a slightly larger
prK ~ 100°. It however differs sizably from |[Jcr, pcF),
with ¢cp ~ 50°. This can be seen by comparing the or-
bitals shown in the upper and bottom panels of Fig. 5,
right column, or filled and empty symbols on the sphere
in Fig. 4, right panel. The state |9xk, pxk) also dif-
fers from predictions based on super-exchange models
for the idealized cubic perovskite structure.?:27:3436 Ag
we will show later, for the ideal cubic structure, the
favored orbital in the paramagnetic phase is approxi-
mately either %|—xz+xy+yz> ~ |55°,135°) or one of
the states obtained using the (cubic) symmetry trans-
formations: (9,¢) — (180° — 9, ¢), (¥, — 180°) and
(180° — ¥, p — 180°).

In order to better understand these results, we derived
the most general super-exchange Hamiltonian for the t%g
configuration (paramagnetic phase) and extract its pa-
rameters from our LDA+DMFT calculations. To this
end, it is convenient to split the super-exchange interac-
tion into its irreducible cubic tensors components
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The operator 7;* is the component p of the tensor op-
erator with rank r (in this specific case, r = 0,1 2); for
convenience we normalize them such that Tr(AT # )2 =1
The general analytic expression of the Hamiltonian and
the super-exchange tensor D% is given in the Appendix.

In the ideal cubic perovskite case, if one exclusively
takes into account the two dominant 7 bonds, only two
orbitals are active in each direction; we define ¢ as the as-
sociated hopping integral, identical for all bonds. In this
approximation, for two neighboring sites along z, labeled
with ¢ and 57 = ¢ £+ 2, the super-exchange Hamiltonian

&r=0

gcr=0

FIG. 5: (Color online) Top: Lowest energy crystal-field or-
bital at site Ti1, |dcr, ¢cr). It is very close to the most occu-
pied natural orbital in the presence of the full static crystal-
field splitting ecr. Bottom: Most occupied natural orbital
|9xxk, vrk) for idealized structure with no static crystal-field
splitting in the 7" — 0 limit. Left: YTiOs. Right: LaTiOs.

takes the simple form
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where I'sg = 4t2/U is the energy scale. The parameters
w; with ¢ = 0,...,3 can be expressed in term of the
function

1+ 21J/U) = ?I/U) = 33J/U)'
(4)

w(Cl, Co, 63):

More specifically, wg = w(%,f%,O), wy = (3,3,0)

wy = w(0, %, %), and wy = w(0,0,1). The correspond-



ing Hamiltonian for neighbors along the & direction is
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where s = 1. The super-exchange Hamiltonian in g

direction ﬁi’j:ii@ can be obtained from the expres-

sion for HS’] *2 1y setting s = —1. In this ideal-
ized case, under the local constraint ngy+ng.+n,, = 1,
the super-exchange Hamiltonian given above can be re-
cast into a simpler form in terms of spin-1/2 pseudo-
spin operators.2!:3%36 For a supercell compatible with the
GdFeOs-type distortion the associated classical orbitally-
ordered ground state is associated with a D34 octahedral
distortion,?® i.e., approximately the %|f:cz+:cy+yz>
state. In the formalism just introduced, this type of or-
dermg arises from the terms 72 “TJQ TE ﬁé’ézlii and

The general form of the interaction given in Eq. (2)
allows us to go from simple models to realistic super-
exchange Hamiltonians with general hopping integrals.
The full expression for the coupling constants in Eq. (2)
can be found in the Appendix.

In Fig. 6 we show AE(Y¥,p), the classical super-
exchange energy gain per cell for orbital ordering com-
patible with the space group of the titanates. It is defined
as

1 o i i
A= 5 X (@A) -5 ) 0

J>i

where |W99) = [, ¢)i|0, ); and the energy zero Eg is
the super-exchange energy for the para-orbital state. The
terms of Hamiltonian (2) which can give rise to an orbital
ordering transition are those which are quadratic in the
operators with rank » > 0. The linear terms instead
yield an orbital Zeeman effect,'® and their contributions
cancel out in the ideal cubic limit; this can be seen com-
paring the upper and lower right panels of Fig. 6. The
figure also shows that in the cubic perovskite limit the
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FIG. 6: (Color online) Super-exchange total energy gain
AE(Y, p) for a classical orbitally-ordered ground state com-
patible with the GdFeOs-type distortion. The energy zero is
the energy of the para-orbital state. In each panel, the differ-
ent lines correspond to the values of ¢ specified in the right
top panel. Top panels: all super-exchange terms. Bottom
panels: quadratic terms only. Left: YTiOs. Center: LaTiOs.
Right: For comparison, we show the result for the cubic case.
We chose t ~ 150 meV, which is a value between the aver-
age diagonal hopping integral for LaTiO3 and YTiOs, given in
Table I. Black lines: ¢ values that yield the energy minimum,
indicated in each case in the figure. The results are invari-
ant under the transformation (4, ¢) — (180° — ¢, — 180°)
hence we show only results for ¥ and ¢ between 0° and
180°. In the cubic limit an additional symmetry is present,
(197 30) — (1800 - 197 SD)

super-exchange energy gain for a classical orbitally or-
dered state AE(1, @) is, as expected, very small even for
the optimal angles. This is because all super-exchange

2,1z A2 .
terms but the one arising from 7;"*7;"** are either frus-

J
trated or cancel out (see Appendlx for details) so that
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s 24
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Furthermore, it has been pointed out that in such a limit
quantum fluctuations might even completely prevent or-
dering at finite temperature.?” These considerations are
completely in line with known results for the pseudo-spin

1/2 model.21:22,25,34-36
In the presence of the GdFeOgs-type distortion, how-



ever, the hopping integrals couple different orbitals and
the simple pseudo-spin-1/2 picture no longer applies
in general. Earlier modelizations for the magnetic
phase?7-28:34:38 have already shown that the GdFeOs-
type distortion can introduce new super-exchange paths,
e.g., in a simple tight-binding description, via the cou-
pling of atomic e, and ty4 states, thus influencing spin-
orbital ordering phenomena. Thanks to the general
super-exchange Hamiltonian, Eq. (2), and the realistic
estimates of the super-exchange parameters obtained in
this work via the expressions given in the Appendix, we
can now quantify this effect and specify its nature. Fur-
thermore, this can be done specifically for the paramag-
netic phase, the one relevant for unraveling the role of
the super-exchange interaction in the genesis of orbital
ordering at the temperatures where it sets in.

In the left and center panels of Fig. 6 we show AE(¥, )
for realistic hopping integrals; the values of the latter can
be found in Tab. I. The top panels show the total en-
ergy gain and the bottom panels the contribution of only
the quadratic terms, those that can give rise to a phase
transition. The angles ¥/, s that maximize the en-
ergy gain, yielding AE(9y, o) = AEy, are basically
the same with and without linear terms. Furthermore
Yym and @y are in accord with dxk and gk obtained in
LDA+DMFT calculations. The energy gain at the opti-
mal angles is AFy; ~ 40 meV, also in line with the criti-
cal temperature of about 300 K obtained in LDA+DMFT
calculations — taking into account that AFEy; is overesti-
mated due to the neglected dynamical quantum effects.
This energy gain is about five times larger than the cor-
responding result in the cubic limit (right panels). By
analyzing these results we find that it is the off-diagonal
hopping integrals that enhance the super-exchange en-
ergy gain, favoring a Jahn-Teller-like natural orbital with
prK ~ 90° over the %| — zz + zy + yz) natural or-
bital with pxk = 135°. The super-exchange te2rms ghat

~2.xz 2,12

turn out to contribute most, in addition to 7; (PR

~l,z ~2,x2 ~lz 1lx ~2xz 1l

are 7,7, and 7,777;7", as well as 7;77"7,7". This can
be understood from Tab. I, which shows the changes in
hopping integrals with respect to the cubic limit, and
Tabs. II and IIT which shows the super-exchange tensor
elements as a function of the hopping integrals. This
conclusion applies to both LaTiO3 and YTiOg3, with the
angle ok slightly smaller than 90° in the case of YTiOs,
and slightly larger for LaTiOs. Figs. 5 and 6, however,
also emphasize the main difference between YTiO3 and
LaTiOs: while super-exchange effects are rather similar
in the two systems, in YTiOgs they reinforce the effect
of the static crystal-field splitting. Instead, in LaTiOsg,
which has a smaller GdFeOgs-type distortion, they par-
tially compete with it.

Summarizing, in both LaTiO3z and YTiOg, our results
show that pure super-exchange effects leading to orbital
ordering are much larger than expected from idealized
cubic perovskite models. Still, the upper limit for the
super-exchange critical temperature, although large, is
at most Txx ~ 300 K. Orbital order at higher tem-

YTiO3 LaTiO3 cubic

Imn Imn Imn
mi1 mg, | 001 100 010 001 100 010 001 100 010
xy1 wyy | -5 -151 -151 -16 -174 -174 0 —t -t
rz1 xzy | 162 -43  -43 198 -39 -39 —t 0 0
yz1 yzy | 46 63 63 180 7TTT —t 0 0
xy1 xzy | 82 -64 70 51 -60 73 0 0 0
rz1 xYy | 82 70 -64 51 73 -60 0 0 0
xy1 yzy | 66  -18 -50 -61 -29 -39 0 0 0
yz1 xyy | -66  -50 -18 -61 -39 -29 0 0 0
rz1 yzy | 73 30 -182 52 12 -176 0 0 —t
yz1 xzy | 73 -182 -30 52 -176 12 0 -t 0

TABLE I: Hopping integrals —ti;f:m/ /meV from site i of type
Ti; to a site i’ = i 4 Ix + my + nz of type Tiz or Tis. From
left to right: YTiOs, LaTiOs and the ideal cubic limit. In
the notation adopted, the (zz,yz,zy) Wannier basis changes
from site to site due to symmetries. Point symmetry trans-
formations with respect to site Ti; are: (Z <> §) for Tiz and
(2 <> —2) for Tis.

perature can thus only be ascribed to the presence of
a static crystal-field splitting. In this respect, a system-
atic experimental study of the evolution of distortions
with increasing temperature well above 300 K would be
essential to finally settle the question of the role of super-
exchange in the genesis of orbital ordering. Some high-
temperature data are available for LaTiOs. They indi-
cate that all distortions (Jahn-Teller, tilting and rotation
angles and the D34 distortions) either remain unchanged
or slightly decrease with increasing temperature. The
available structural data have been obtained with differ-
ent techniques,'’?%29 and their accuracy might not be
directly comparable; nevertheless, based on them, we find
that the lowest energy LDA crystal-field orbital does not
change much with increasing temperature. The corre-
sponding LDA+DMFT results are shown in Fig. 4. This
indicates that orbital ordering stays almost unchanged
well above 300 K. If this is experimentally confirmed in
both materials, it would show that the super-exchange
interaction, although unexpectedly strong, can not drive
orbital-order alone in the titanates. This conclusion
would then be close to the one we have previously ob-
tained for LaMnOjz and KCuF3 and other representa-
tive e, cases.»®10 It is reinforced by the fact that, while
the super-exchange interaction appears to cooperate with
crystal-field effects in YTiOg, in LaTiOg it partially com-
petes with them, while both being orbitally ordered. Fi-
nally, the fact that the classical super-exchange energy
gain for static orbital ordering is enhanced by about a
factor of five in the presence of the GdFeOgs-type distor-
tion, so that Tkyk is, surprisingly, about as large as in
KCuFs3, supports the view that processes involving dy-
namical orbital fluctuations are not likely to play a role
in determining the orbital physics of either system.



IV. CONCLUSIONS

We have studied the role of super-exchange in the
origin of orbital ordering in representative t,, materi-
als, YTiO3 and LaTiO3. We adopted an approach that
we have previously established and successfully used for
ey systems.»5® We find that the super-exchange transi-
tion temperature is, surprisingly, as large as in the case
of KCuFs, a paradigmatic e, orbitally-ordered material.
We show it is strongly enhanced by the GdFeOgs-type dis-
tortion. While in the case of YTiO3 the super-exchange
most occupied orbital |9kk, pkk) is similar to the low-
est energy crystal-field state |cr, pcr), in LaTiO3 they
differ substantially. This indicates that in YTiOg3 lattice
distortions reinforce super-exchange effects, while in the
case of LaTiOg the two effects compete. High tempera-
ture structural data are to the best of our knowledge only
available for LaTiOgz so far. They indicate no substan-
tial change in the occupied orbital up to 700 K, i.e., well
above Tik. Orbital ordering persisting till that temper-
ature cannot be explained by the super-exchange mech-
anism alone, and needs the explicit presence of a static
crystal-field splitting. This conclusion is reinforced by
fact that in LaTiOj3 the super-exchange most occupied
natural orbital differs substantially from the experimen-
tal one.

Appendix: Orbital super-exchange for tég systems

Here we give the general form of the super-exchange
interaction, expressed as a function of orbital irreducible
cubic tensor operators 7, " of rank r = 0,1, 2, with com-
ponents p = —r,..,r

Hsp = ZZZ%TuDTHTﬂ AJHL'
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We obtain the super-exchange Hamiltonian from second-
order perturbation theory and project it into its irre-
ducible tensor components. For convenience we chose
the normalization of the tensor operators such that
Tr(7*)? = 1 and split the expression of the tensor ele-
ments appearing in Eq. (A.1) in two terms,
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]
B, o = =2 ) {al#]["|e) (bl " =7 (A3)

abed

l:wl (6;A’,0 + 5u,0) + wo (2 - 5;#,0 - 5u,0) )

and the second

Cﬁiﬂu = 42 (a7 |c) d|” 1) (A.4)
acbd
ti‘,j t,éz’,jrnl t%] bti’j J
{wz ; <5W,,Os“m1U + 61”,08"“’[]’”“)
1

5] 480
c,d"a w
_$ (11)2((5“/,0 + 6,u,0) + 73(2 - 5#«,0 - 6/,/,0)):| !

where a,b,c,d are ty, states. The parameters w; with

1=0,...,3 can be expressed as wg = w(é, :1)’,0), wy; =
w(3,2,0), wo =w(0,%,2) and w3 = w(0,0,1), where
C1 Co C3
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In the special case of diagonal hopping integrals the only
terms which are non zero are those given in Tab. II. For
bonds in & direction we thus have for j =i+ &
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where s, = 1. The super-exchange Hamiltonian H¢ G =ity

can be obtained using symmetries, i.e., by exchanglng in
the prefactors x <+ y and setting s, = —s,. Next we
define p,, = (9, |7 " )i- The relevant non-zero
terms are, for ¢ corresponding to site Ti; (see Fig. 1)

p1,2 = (1 — cos 29) cos 2¢/2\/§ (A7)
P1,x = sin 29(cos ¢ + sinp) /2, (A.8)
pa.2 = —(1+ 3cos 29)/2V6, (A.9)
P2,z» = sin 20(cos ¢ —sinp) /2, (A.10)
Paaz_y2 = (1 — cos20) sin 2p0/2V/2. (A.11)

If only diagonal hopping integrals are present, the classi-
cal energy associated with orbital order compatible with
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TABLE II: Tensor elements different from zero in the case in which the hopping integrals are only diagonal.
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TABLE III: Additional quadratic (r # 0,7" # 0) and linear terms (r = 0,7’ # 0) present if the off-diagonal hopping integrals
are non zero. Only relevant contributions are listed; in the table we assume for simplicity that the hopping integrals are real,
as in the case considered in this paper.



the space group of the titanates is thus AE(Y,¢) =
AEqQ (9, ) + AEL(Y, ), where the quadratic term is
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and the linear term is
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In the cubic limit, in which all non-zero hopping integrals
are identical, all linear and some of the quadratic terms
cancel and this further simplifies to

AE®, ¢)

e =(2wz—w1)p; .2 (A.14)
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where I'sgp = %. Hence, in this case, only the 74, .75 .

term yields an actual energy gain.
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Notice that in Refs. 15,16,18,20 the local z axis is in the
direction of the longest Ti-O bond. This differs from the
convention adopted in this work (see caption of Fig. 1).



