000885420 001__ 885420
000885420 005__ 20230426083222.0
000885420 0247_ $$2doi$$a10.1103/PhysRevB.99.125102
000885420 0247_ $$2ISSN$$a0163-1829
000885420 0247_ $$2ISSN$$a0556-2805
000885420 0247_ $$2ISSN$$a1050-2947
000885420 0247_ $$2ISSN$$a1094-1622
000885420 0247_ $$2ISSN$$a1095-3795
000885420 0247_ $$2ISSN$$a1098-0121
000885420 0247_ $$2ISSN$$a1538-4446
000885420 0247_ $$2ISSN$$a1538-4489
000885420 0247_ $$2ISSN$$a1550-235X
000885420 0247_ $$2ISSN$$a2469-9950
000885420 0247_ $$2ISSN$$a2469-9969
000885420 0247_ $$2ISSN$$a2469-9977
000885420 037__ $$aFZJ-2020-03817
000885420 082__ $$a530
000885420 1001_ $$0P:(DE-Juel1)144464$$aZhang, Guoren$$b0
000885420 245__ $$aOptical conductivity, Fermi surface, and spin-orbit coupling effects in Sr 2 RhO 4
000885420 260__ $$aWoodbury, NY$$bInst.$$c2019
000885420 3367_ $$2DRIVER$$aarticle
000885420 3367_ $$2DataCite$$aOutput Types/Journal article
000885420 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656071981_21490
000885420 3367_ $$2BibTeX$$aARTICLE
000885420 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885420 3367_ $$00$$2EndNote$$aJournal Article
000885420 520__ $$aBy using the local-density approximation + dynamical mean-field theory approach, we study the low-energy electronic properties of $Sr_2RhO_4$ in a realistic setting, and compare to $Sr_2RuO_4$. We investigate the interplay of spin-orbit coupling, crystal field, and Coulomb interaction, including the tetragonal terms of the Coulomb tensor. We find that (i) differently than in $Sr_2RuO_4$, the zero-frequency effective crystal-field “enhancement” due to Coulomb repulsion, ΔɛCF(ω=0), is small and, depending on the parameters, even negative. (ii) In addition, the effects of (realistic) anisotropic Coulomb terms are weak. (iii) Instead, the effective zero-frequency enhancement of the spin-orbit interaction doubles the value of the corresponding local-density approximation couplings. This explains the experimental Fermi surface and supports a previous proposal based on static mean-field calculations. We find that the sign of the Coulomb-induced spin-orbit anisotropy is influenced by the octahedral rotation. Based on these conclusions, we examine recent optical conductivity experiments. (iv) We show that the spin-orbit interaction is key for understanding them; differently than in $Sr_2RuO_4$, the $t_{2g}$ intraorbital contributions are small; thus, the single-band picture does not apply.
000885420 536__ $$0G:(DE-Juel1)jiff41_20091101$$aMultiplet effects in strongly correlated materials (jiff41_20091101)$$cjiff41_20091101$$fMultiplet effects in strongly correlated materials$$x0
000885420 536__ $$0G:(DE-Juel1)jiff46_20161101$$aSpin-orbital order-disorder transitions in strongly correlated systems (jiff46_20161101)$$cjiff46_20161101$$fSpin-orbital order-disorder transitions in strongly correlated systems$$x1
000885420 542__ $$2Crossref$$i2019-03-04$$uhttps://link.aps.org/licenses/aps-default-license
000885420 588__ $$aDataset connected to CrossRef
000885420 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b1$$ufzj
000885420 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.99.125102$$bAmerican Physical Society (APS)$$d2019-03-04$$n12$$p125102$$tPhysical Review B$$v99$$x2469-9950$$y2019
000885420 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.99.125102$$gVol. 99, no. 12, p. 125102$$n12$$p125102$$tPhysical review / B$$v99$$x2469-9950$$y2019
000885420 909CO $$ooai:juser.fz-juelich.de:885420$$pextern4vita
000885420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b1$$kFZJ
000885420 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000885420 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000885420 980__ $$ajournal
000885420 980__ $$aEDITORS
000885420 980__ $$aI:(DE-Juel1)JSC-20090406
000885420 980__ $$aI:(DE-82)080012_20140620
000885420 9801_ $$aEXTERN4VITA
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jssc.1996.0167
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/8/9/175
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.246402
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.106401
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.226401
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.026406
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.026408
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/27/8/085602
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.165105
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/aa648f
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.106402
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.267402
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.087404
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.085141
000885420 999C5 $$1P. Blaha$$2Crossref$$oP. Blaha WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2001$$tWIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties$$y2001
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(90)90187-6
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.12847
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2010.08.005
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.349
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.035122
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.195141
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.226401
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.075145
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.256401
000885420 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssr.201800211