| Hauptseite > Institutssammlungen > JSC > Optical conductivity, Fermi surface, and spin-orbit coupling effects in Sr 2 RhO 4 > print |
| 001 | 885420 | ||
| 005 | 20230426083222.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.99.125102 |2 doi |
| 024 | 7 | _ | |a 0163-1829 |2 ISSN |
| 024 | 7 | _ | |a 0556-2805 |2 ISSN |
| 024 | 7 | _ | |a 1050-2947 |2 ISSN |
| 024 | 7 | _ | |a 1094-1622 |2 ISSN |
| 024 | 7 | _ | |a 1095-3795 |2 ISSN |
| 024 | 7 | _ | |a 1098-0121 |2 ISSN |
| 024 | 7 | _ | |a 1538-4446 |2 ISSN |
| 024 | 7 | _ | |a 1538-4489 |2 ISSN |
| 024 | 7 | _ | |a 1550-235X |2 ISSN |
| 024 | 7 | _ | |a 2469-9950 |2 ISSN |
| 024 | 7 | _ | |a 2469-9969 |2 ISSN |
| 024 | 7 | _ | |a 2469-9977 |2 ISSN |
| 037 | _ | _ | |a FZJ-2020-03817 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Zhang, Guoren |0 P:(DE-Juel1)144464 |b 0 |
| 245 | _ | _ | |a Optical conductivity, Fermi surface, and spin-orbit coupling effects in Sr 2 RhO 4 |
| 260 | _ | _ | |a Woodbury, NY |c 2019 |b Inst. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1656071981_21490 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a By using the local-density approximation + dynamical mean-field theory approach, we study the low-energy electronic properties of $Sr_2RhO_4$ in a realistic setting, and compare to $Sr_2RuO_4$. We investigate the interplay of spin-orbit coupling, crystal field, and Coulomb interaction, including the tetragonal terms of the Coulomb tensor. We find that (i) differently than in $Sr_2RuO_4$, the zero-frequency effective crystal-field “enhancement” due to Coulomb repulsion, ΔɛCF(ω=0), is small and, depending on the parameters, even negative. (ii) In addition, the effects of (realistic) anisotropic Coulomb terms are weak. (iii) Instead, the effective zero-frequency enhancement of the spin-orbit interaction doubles the value of the corresponding local-density approximation couplings. This explains the experimental Fermi surface and supports a previous proposal based on static mean-field calculations. We find that the sign of the Coulomb-induced spin-orbit anisotropy is influenced by the octahedral rotation. Based on these conclusions, we examine recent optical conductivity experiments. (iv) We show that the spin-orbit interaction is key for understanding them; differently than in $Sr_2RuO_4$, the $t_{2g}$ intraorbital contributions are small; thus, the single-band picture does not apply. |
| 536 | _ | _ | |a Multiplet effects in strongly correlated materials (jiff41_20091101) |0 G:(DE-Juel1)jiff41_20091101 |c jiff41_20091101 |f Multiplet effects in strongly correlated materials |x 0 |
| 536 | _ | _ | |a Spin-orbital order-disorder transitions in strongly correlated systems (jiff46_20161101) |0 G:(DE-Juel1)jiff46_20161101 |c jiff46_20161101 |f Spin-orbital order-disorder transitions in strongly correlated systems |x 1 |
| 542 | _ | _ | |i 2019-03-04 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Pavarini, Eva |0 P:(DE-Juel1)130881 |b 1 |u fzj |
| 773 | 1 | 8 | |a 10.1103/physrevb.99.125102 |b American Physical Society (APS) |d 2019-03-04 |n 12 |p 125102 |3 journal-article |2 Crossref |t Physical Review B |v 99 |y 2019 |x 2469-9950 |
| 773 | _ | _ | |a 10.1103/PhysRevB.99.125102 |g Vol. 99, no. 12, p. 125102 |0 PERI:(DE-600)2844160-6 |n 12 |p 125102 |t Physical review / B |v 99 |y 2019 |x 2469-9950 |
| 909 | C | O | |p extern4vita |o oai:juser.fz-juelich.de:885420 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130881 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-24 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-24 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2018 |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-24 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-24 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-24 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-24 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-24 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a EDITORS |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-82)080012_20140620 |
| 980 | 1 | _ | |a EXTERN4VITA |
| 999 | C | 5 | |a 10.1006/jssc.1996.0167 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1367-2630/8/9/175 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.96.246402 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.97.106401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.98.226401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.101.026406 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.101.026408 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/0953-8984/27/8/085602 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.86.165105 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1361-648X/aa648f |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.116.106402 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.119.267402 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.113.087404 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.97.085141 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |1 P. Blaha |y 2001 |2 Crossref |t WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties |o P. Blaha WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2001 |
| 999 | C | 5 | |a 10.1016/0010-4655(90)90187-6 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.56.12847 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/j.cpc.2007.11.016 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/j.cpc.2010.08.005 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/RevModPhys.83.349 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.72.035122 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.87.195141 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.104.226401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.95.075145 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.116.256401 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1002/pssr.201800211 |9 -- missing cx lookup -- |2 Crossref |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|