000885449 001__ 885449
000885449 005__ 20220930130254.0
000885449 0247_ $$2doi$$a10.1126/sciadv.aba9854
000885449 0247_ $$2Handle$$a2128/26324
000885449 0247_ $$2altmetric$$aaltmetric:94551093
000885449 0247_ $$2pmid$$apmid:33208356
000885449 0247_ $$2WOS$$aWOS:000592173500003
000885449 037__ $$aFZJ-2020-03832
000885449 082__ $$a500
000885449 1001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b0$$eCorresponding author
000885449 245__ $$aNa + -dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters
000885449 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2020
000885449 3367_ $$2DRIVER$$aarticle
000885449 3367_ $$2DataCite$$aOutput Types/Journal article
000885449 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630414373_7612
000885449 3367_ $$2BibTeX$$aARTICLE
000885449 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885449 3367_ $$00$$2EndNote$$aJournal Article
000885449 520__ $$aExcitatory amino acid transporters (EAATs) harness [Na+], [K+], and [H+] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na+ ions, [Na+] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na+:substrate coupling in the EAAT homolog GltPh. A lipidic cubic phase x-ray crystal structure of wild-type, Na+-only bound GltPh at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na+ ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na+-stabilized gate opening and electrostatic coupling of aspartate to Na+ binding provides a constant Na+:substrate transport stoichiometry over a broad range of neurotransmitter concentrations.
000885449 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000885449 536__ $$0G:(DE-Juel1)jics40_20190501$$aMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20190501)$$cjics40_20190501$$fMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS$$x1
000885449 536__ $$0G:(DE-Juel1)jara0180_20200501$$aMolecular dynamics simulations of P2X receptors (jara0180_20200501)$$cjara0180_20200501$$fMolecular dynamics simulations of P2X receptors$$x2
000885449 536__ $$0G:(DE-Juel1)jics42_20191101$$aMultiscale simulations of voltage-gated sodium channel complexes and clusters (jics42_20191101)$$cjics42_20191101$$fMultiscale simulations of voltage-gated sodium channel complexes and clusters$$x3
000885449 536__ $$0G:(DE-Juel1)jara0177_20191101$$aMolecular dynamics of the SLC26 family of ion channels and transporters (jara0177_20191101)$$cjara0177_20191101$$fMolecular dynamics of the SLC26 family of ion channels and transporters$$x4
000885449 588__ $$aDataset connected to CrossRef
000885449 7001_ $$0P:(DE-Juel1)131949$$aBalandin, Taras$$b1
000885449 7001_ $$0P:(DE-HGF)0$$aAstashkin, Roman$$b2
000885449 7001_ $$0P:(DE-Juel1)165847$$aAlleva, Claudia$$b3
000885449 7001_ $$0P:(DE-Juel1)156429$$aMachtens, Jan-Philipp$$b4$$eCorresponding author
000885449 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b5
000885449 7001_ $$0P:(DE-Juel1)131948$$aBaeken, Christian$$b6
000885449 7001_ $$0P:(DE-Juel1)169220$$aKovalev, Kirill$$b7
000885449 7001_ $$0P:(DE-Juel1)145125$$aBerndt, Meike$$b8
000885449 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.aba9854$$gVol. 6, no. 47, p. eaba9854 -$$n47$$peaba9854 -$$tScience advances$$v6$$x2375-2548$$y2020
000885449 8564_ $$uhttps://juser.fz-juelich.de/record/885449/files/Invoice_APC600155196.pdf
000885449 8564_ $$uhttps://juser.fz-juelich.de/record/885449/files/Invoice_APC600155196.pdf?subformat=pdfa$$xpdfa
000885449 8564_ $$uhttps://juser.fz-juelich.de/record/885449/files/eaba9854.full.pdf$$yOpenAccess
000885449 8767_ $$8APC600155196$$92020-09-29$$d2020-10-09$$eAPC$$jZahlung erfolgt$$z5220USD Belegnr. 1200157938
000885449 909CO $$ooai:juser.fz-juelich.de:885449$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b0$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich$$b1$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165847$$aForschungszentrum Jülich$$b3$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156429$$aForschungszentrum Jülich$$b4$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b5$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131948$$aForschungszentrum Jülich$$b6$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169220$$aForschungszentrum Jülich$$b7$$kFZJ
000885449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145125$$aForschungszentrum Jülich$$b8$$kFZJ
000885449 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000885449 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885449 9141_ $$y2020
000885449 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000885449 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000885449 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2018$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2018$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885449 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000885449 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000885449 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000885449 920__ $$lyes
000885449 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000885449 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000885449 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000885449 980__ $$ajournal
000885449 980__ $$aVDB
000885449 980__ $$aI:(DE-Juel1)IBI-1-20200312
000885449 980__ $$aI:(DE-Juel1)IBI-7-20200312
000885449 980__ $$aI:(DE-82)080012_20140620
000885449 980__ $$aAPC
000885449 980__ $$aUNRESTRICTED
000885449 9801_ $$aAPC
000885449 9801_ $$aFullTexts