001     885452
005     20210130010411.0
024 7 _ |a 10.1002/chem.202000664
|2 doi
024 7 _ |a 0947-6539
|2 ISSN
024 7 _ |a 1521-3765
|2 ISSN
024 7 _ |a 2128/25836
|2 Handle
024 7 _ |a altmetric:82269651
|2 altmetric
024 7 _ |a pmid:32104930
|2 pmid
024 7 _ |a WOS:000533570100001
|2 WOS
037 _ _ |a FZJ-2020-03835
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Paul, Melanie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Exceptional Substrate Diversity in Oxygenation Reactions Catalyzed by a Bis(μ‐oxo) Copper Complex
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601990766_2081
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The enzyme tyrosinase contains a reactive side‐on peroxo dicopper(II) center as catalytically active species in C−H oxygenation reactions. The tyrosinase activity of the isomeric bis(μ‐oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(μ‐oxo) dicopper(III) species [Cu2(μ‐O)2(L1)2](X)2 ([O1](X)2, X=PF6−, BF4−, OTf−, ClO4−), stabilized by the new hybrid guanidine ligand 2‐{2‐((dimethylamino)methyl)phenyl}‐1,1,3,3‐tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo‐UHR‐ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6)2, which results in mono‐ and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Teubner, Melissa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grimm‐Lebsanft, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Golchert, Christiane
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Meiners, Yannick
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Senft, Laura
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Keisers, Kristina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liebhäuser, Patricia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rösener, Thomas
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Biebl, Florian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Buchenau, Sören
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Naumova, Maria
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Murzin, Vadim
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Krug, Roxanne
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hoffmann, Alexander
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Pietruszka, Jörg
|0 P:(DE-Juel1)128906
|b 15
|u fzj
700 1 _ |a Ivanović‐Burmazović, Ivana
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rübhausen, Michael
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Herres‐Pawlis, Sonja
|0 P:(DE-HGF)0
|b 18
|e Corresponding author
773 _ _ |a 10.1002/chem.202000664
|g Vol. 26, no. 34, p. 7556 - 7562
|0 PERI:(DE-600)1478547-x
|n 34
|p 7556 - 7562
|t Chemistry - a European journal
|v 26
|y 2020
|x 1521-3765
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885452/files/chem.202000664.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885452/files/chem.202000664.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885452
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Universität Hamburg
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Universität Hamburg
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Friedrich-Alexander-Universität Erlangen-Nürnberg
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Universität Hamburg
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Universität Hamburg
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)128906
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 15
|6 P:(DE-Juel1)128906
910 1 _ |a Friedrich-Alexander-Universität Erlangen-Nürnberg
|0 I:(DE-HGF)0
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Universität Hamburg
|0 I:(DE-HGF)0
|b 17
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 18
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-EUR J : 2018
|d 2020-02-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM-EUR J : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBOC-20090406
|k IBOC
|l Institut für Bioorganische Chemie (HHUD)
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBOC-20090406
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21