001     885453
005     20210130010411.0
024 7 _ |a 10.1002/adsc.202000039
|2 doi
024 7 _ |a 0941-1216
|2 ISSN
024 7 _ |a 1436-9966
|2 ISSN
024 7 _ |a 1521-3897
|2 ISSN
024 7 _ |a 1615-4150
|2 ISSN
024 7 _ |a 1615-4169
|2 ISSN
024 7 _ |a 2128/25837
|2 Handle
024 7 _ |a altmetric:78591572
|2 altmetric
024 7 _ |a WOS:000540092500012
|2 WOS
037 _ _ |a FZJ-2020-03836
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Drennhaus, Till
|0 P:(DE-Juel1)167459
|b 0
245 _ _ |a Enantioselective Ammonium Ylide Mediated One‐Pot Synthesis of Highly Substituted γ ‐Butyrolactones
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601991470_3366
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An ammonium ylide mediated access towards trans‐β,γ‐disubstituted, all‐trans‐α,β,γ‐trisubstituted, and α,α,β,γ‐tetrasubstituted γ‐butyrolactones bearing a broad variety of functionalities was developed. Starting from widely accessible benzylidene Meldrum's acid derivatives and α‐bromo carbonyl compounds, γ‐butyrolactones were obtained in yields between 32–99% with up to excellent diastereoselectivities (>95:5) via a DABCO‐mediated [2+1] annulation. Utilization of enantiomerically pure cinchona alkaloid derivatives enables the first asymmetric ammonium ylide mediated method to provide (3R, 4R)‐β,γ‐disubstituted and (2R, 3R, 4R)‐α,β,γ‐trisubstituted γ‐butyrolactones in moderate to good yields with up to very good enantiomeric ratios (97:3). The scalability of the transformation was proven while determining the absolute configuration.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Öhler, Laura
|0 P:(DE-Juel1)168186
|b 1
700 1 _ |a Djalali, Saveh
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Höfmann, Svenja
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Clemens
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pietruszka, Jörg
|0 P:(DE-Juel1)128906
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Worgull, Dennis
|0 P:(DE-Juel1)157926
|b 6
773 _ _ |a 10.1002/adsc.202000039
|g Vol. 362, no. 12, p. 2385 - 2396
|0 PERI:(DE-600)2041384-1
|n 12
|p 2385 - 2396
|t Advanced synthesis & catalysis
|v 362
|y 2020
|x 1615-4169
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885453/files/adsc.202000039.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885453/files/adsc.202000039.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885453
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168186
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)168186
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128906
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)128906
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157926
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)157926
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV SYNTH CATAL : 2018
|d 2020-02-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV SYNTH CATAL : 2018
|d 2020-02-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBOC-20090406
|k IBOC
|l Institut für Bioorganische Chemie (HHUD)
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBOC-20090406
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21