000885456 001__ 885456 000885456 005__ 20210130010413.0 000885456 0247_ $$2doi$$a10.1002/anie.202008365 000885456 0247_ $$2ISSN$$a0044-8249 000885456 0247_ $$2ISSN$$a0570-0833 000885456 0247_ $$2ISSN$$a1433-7851 000885456 0247_ $$2ISSN$$a1521-3757 000885456 0247_ $$2ISSN$$a1521-3773 000885456 0247_ $$2Handle$$a2128/25833 000885456 0247_ $$2altmetric$$aaltmetric:88489424 000885456 0247_ $$2pmid$$apmid:32567075 000885456 0247_ $$2WOS$$aWOS:000559994400001 000885456 037__ $$aFZJ-2020-03839 000885456 041__ $$aEnglish 000885456 082__ $$a540 000885456 1001_ $$0P:(DE-HGF)0$$aWeber, Anja$$b0 000885456 245__ $$aExperimental and Computational Investigations of the Reactions between α,β‐Unsaturated Lactones and 1,3‐Dienes by Cooperative Lewis Acid/Brønsted Acid Catalysis 000885456 260__ $$aWeinheim$$bWiley-VCH$$c2020 000885456 3367_ $$2DRIVER$$aarticle 000885456 3367_ $$2DataCite$$aOutput Types/Journal article 000885456 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601987314_2081 000885456 3367_ $$2BibTeX$$aARTICLE 000885456 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885456 3367_ $$00$$2EndNote$$aJournal Article 000885456 520__ $$aThe reactions of α,β‐unsaturated δ‐lactones with activated dienes such as 1,3‐dimethoxy‐1‐[(trimethylsilyl)oxy]‐1,3‐butadiene (Brassard's diene) are barely known in literature and show high potential for the synthesis of isocoumarin moieties. An in‐depth investigation of this reaction proved a stepwise mechanism via the vinylogous Michael‐products. Subsequent cyclisation and oxidation by LHMDS and DDQ, respectively, provided six mellein derivatives (30–84 %) and four angelicoin derivatives (40–78 %) over three steps. DFT‐calculations provide insights into the reaction mechanism and support the theory of a stepwise reaction. 000885456 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0 000885456 588__ $$aDataset connected to CrossRef 000885456 7001_ $$0P:(DE-HGF)0$$aBreugst, Martin$$b1$$eCorresponding author 000885456 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b2$$eCorresponding author$$ufzj 000885456 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202008365$$gVol. 59, no. 42, p. 18709 - 18716$$n42$$p18709 - 18716$$tAngewandte Chemie / International edition$$v59$$x1521-3773$$y2020 000885456 8564_ $$uhttps://juser.fz-juelich.de/record/885456/files/anie.202008365.pdf$$yOpenAccess 000885456 8564_ $$uhttps://juser.fz-juelich.de/record/885456/files/anie.202008365.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000885456 909CO $$ooai:juser.fz-juelich.de:885456$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000885456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ 000885456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Heinrich-Heine-Universität Düsseldorf$$b0 000885456 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universität zu Köln$$b1 000885456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b2$$kFZJ 000885456 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)128906$$a Heinrich-Heine-Universität Düsseldorf$$b2 000885456 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0 000885456 9141_ $$y2020 000885456 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-27 000885456 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000885456 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2018$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2018$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-27$$wger 000885456 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885456 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27 000885456 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger 000885456 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27 000885456 920__ $$lno 000885456 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x0 000885456 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1 000885456 980__ $$ajournal 000885456 980__ $$aVDB 000885456 980__ $$aUNRESTRICTED 000885456 980__ $$aI:(DE-Juel1)IBOC-20090406 000885456 980__ $$aI:(DE-Juel1)IBG-1-20101118 000885456 9801_ $$aFullTexts