000885470 001__ 885470
000885470 005__ 20220310100128.0
000885470 0247_ $$2doi$$a10.1103/PhysRevResearch.2.013276
000885470 037__ $$aFZJ-2020-03853
000885470 082__ $$a530
000885470 1001_ $$00000-0003-1248-2695$$aRaczkowski, Marcin$$b0
000885470 245__ $$aPhase diagram and dynamics of the $SU(N)$ symmetric Kondo lattice model
000885470 260__ $$aCollege Park, MD$$bAPS$$c2020
000885470 3367_ $$2DRIVER$$aarticle
000885470 3367_ $$2DataCite$$aOutput Types/Journal article
000885470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646902810_9591
000885470 3367_ $$2BibTeX$$aARTICLE
000885470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885470 3367_ $$00$$2EndNote$$aJournal Article
000885470 520__ $$aIn heavy-fermion systems, the competition between the local Kondo physics and intersite magnetic fluctuations results in unconventional quantum critical phenomena which are frequently addressed within the Kondo lattice model (KLM). Here we study this interplay in the SU(N) symmetric generalization of the two-dimensional half-filled KLM by quantum Monte Carlo simulations with N up to 8. While the long-range antiferromagnetic (AF) order in SU(N) quantum spin systems typically gives way to spin-singlet ground states with spontaneously broken lattice symmetry, we find that the SU(N) KLM is unique in that for each finite N its ground-state phase diagram hosts only two phases—AF order and the Kondo-screened phase. The absence of any intermediate phase between the N=2 and large-N cases establishes adiabatic correspondence between both limits and confirms that the large-N theory is a correct saddle point of the KLM fermionic path integral and a good starting point to include quantum fluctuations. In addition, we determine the evolution of the single-particle gap, quasiparticle residue of the doped hole at momentum $(π,π)$, and spin gap across the magnetic order-disorder transition. Our results indicate that increasing N modifies the behavior of the coherence temperature: while it evolves smoothly across the magnetic transition at N=2 it develops an abrupt jump—of up to an order of magnitude—at larger but finite N. We discuss the magnetic order-disorder transition from a quantum-field-theoretic perspective and comment on implications of our findings for the interpretation of experiments on quantum critical heavy-fermion compounds.
000885470 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000885470 536__ $$0G:(DE-Juel1)hwb03_20190501$$aNumerical simulations of strongly correlated electron systems. (hwb03_20190501)$$chwb03_20190501$$fNumerical simulations of strongly correlated electron systems.$$x1
000885470 588__ $$aDataset connected to CrossRef
000885470 7001_ $$0P:(DE-HGF)0$$aAssaad, Fakher F.$$b1
000885470 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.013276$$gVol. 2, no. 1, p. 013276$$n1$$p013276$$tPhysical review research$$v2$$x2643-1564$$y2020
000885470 909CO $$ooai:juser.fz-juelich.de:885470$$pextern4vita
000885470 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885470 9801_ $$aEXTERN4VITA
000885470 980__ $$ajournal
000885470 980__ $$aEDITORS
000885470 980__ $$aI:(DE-Juel1)NIC-20090406