000885471 001__ 885471
000885471 005__ 20220301143533.0
000885471 0247_ $$2doi$$a10.1590/1678-992x-2019-0304
000885471 0247_ $$2ISSN$$a0103-9016
000885471 0247_ $$2ISSN$$a1678-992X
000885471 0247_ $$2Handle$$a2128/26159
000885471 0247_ $$2WOS$$aWOS:000562743800001
000885471 037__ $$aFZJ-2020-03854
000885471 041__ $$aEnglish
000885471 082__ $$a640
000885471 1001_ $$00000-0002-0803-1632$$aSoares, Guilherme Filgueiras$$b0
000885471 245__ $$aCharacterization of wheat genotypes for drought tolerance and water use efficiency
000885471 260__ $$aPiracicaba$$bUniv.$$c2021
000885471 3367_ $$2DRIVER$$aarticle
000885471 3367_ $$2DataCite$$aOutput Types/Journal article
000885471 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646126679_1933
000885471 3367_ $$2BibTeX$$aARTICLE
000885471 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885471 3367_ $$00$$2EndNote$$aJournal Article
000885471 520__ $$aThe selection of wheat genotypes according to their drought tolerance is essential to off-season cultivation. The objective of this work was to characterize wheat genotypes through yield and components, morphological characteristics under water stress, and irrigated water use efficiency in the Cerrado region in Brazil. Genotypes were planted during the winters of 2016 and 2017 since there is no precipitation during this season and water levels can be measured. They were then submitted to four water regimes: WR1, WR2, WR3, and WR4, representing 100 %, 83 %, 50 %, and 30 % of evapotranspiration replacement. The following variables were evaluated: peduncle length (PL), number of ears m−2 (NE m−2), hectoliter weight (HW), thousand grain weight (TGW), drought resistance index (DRI), irrigated water use efficiency (IWUE) and yield. Most variables showed correlation with yield and can be a useful tool for breeding programs. PL and HW were best correlated with yield. BRS 264 (irrigated biotype) was productive in treatments receiving the greatest number of irrigation treatments. Given that WR1 registered the highest water level, it was not expected that the rainfed biotype (BR18) would show a higher yield than an irrigated biotype (BRS254). BRS404 (rainfed biotype) was the most productive under moderate stress treatment (WR3). Aliança (rainfed biotype) showed a higher yield under severe stress. Rainfed biotypes presented a higher DRI than the irrigated ones. These genotypes can be used as a reference in breeding programs under each water regime in which their performance was outstanding. None of the variables studied contributed to the selection of the most efficient wheat genotypes in the IWUE.
000885471 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000885471 588__ $$aDataset connected to CrossRef
000885471 7001_ $$00000-0001-9948-5578$$aRibeiro Júnior, Walter Quadros$$b1
000885471 7001_ $$00000-0003-3303-8315$$aPereira, Lucas Felisberto$$b2
000885471 7001_ $$00000-0002-6405-0344$$aLima, Cristiane Andréa de$$b3
000885471 7001_ $$00000-0001-5132-8469$$aSoares, Daiane dos Santos$$b4
000885471 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b5
000885471 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b6$$eCorresponding author
000885471 7001_ $$00000-0002-4516-7352$$aRamos, Maria Lucrecia Gerosa$$b7$$eCorresponding author
000885471 773__ $$0PERI:(DE-600)2016347-2$$a10.1590/1678-992x-2019-0304$$gVol. 78, no. 5, p. e20190304$$n5$$pe20190304$$tScientia agricola$$v78$$x1678-992X$$y2021
000885471 8564_ $$uhttps://juser.fz-juelich.de/record/885471/files/1678-992X-sa-78-05-e20190304.pdf$$yOpenAccess
000885471 909CO $$ooai:juser.fz-juelich.de:885471$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885471 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b5$$kFZJ
000885471 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b6$$kFZJ
000885471 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000885471 9141_ $$y2021
000885471 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21
000885471 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885471 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885471 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI AGR : 2018$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21
000885471 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21
000885471 920__ $$lyes
000885471 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000885471 980__ $$ajournal
000885471 980__ $$aVDB
000885471 980__ $$aI:(DE-Juel1)IBG-2-20101118
000885471 980__ $$aUNRESTRICTED
000885471 9801_ $$aFullTexts