001     885473
005     20210130010416.0
024 7 _ |a 10.1016/j.rse.2020.111934
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a 2128/26180
|2 Handle
024 7 _ |a altmetric:85210460
|2 altmetric
024 7 _ |a WOS:000549189200034
|2 WOS
037 _ _ |a FZJ-2020-03856
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Tagliabue, Giulia
|0 0000-0001-9725-9956
|b 0
245 _ _ |a Sun–induced fluorescence heterogeneity as a measure of functional diversity
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605540198_2430
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plant functional diversity, defined as the range of plant chemical, physiological and structural properties within plants, is a key component of biodiversity which controls the ecosystem functioning and stability. Monitoring its variations across space and over time is critical in ecological studies. So far, several reflectance-based metrics have been tested to achieve this objective, yielding different degrees of success. Our work aimed at exploring the potential of a novel metric based on far-red sun-induced chlorophyll fluorescence (F760) to map the functional diversity of terrestrial ecosystems. This was achieved exploiting high-resolution images collected over a mixed forest ecosystem with the HyPlant sensor, deployed as an airborne demonstrator of the forthcoming ESA-FLEX satellite. A reference functional diversity map was obtained applying the Rao's Q entropy metric on principal components calculated on key plant functional trait maps retrieved from the hyperspectral reflectance cube. Based on the spectral variation hypothesis, which states that the biodiversity signal is encoded in the spectral heterogeneity, two moving window-based approaches were tested to estimate the functional diversity from continuous spectral data: i) the Rao's Q entropy metric calculated on the normalized difference vegetation index (NDVI) and ii) the coefficient of variation (CV) calculated on hyperspectral reflectance. Finally, a third moving window approach was used to estimate the functional diversity based on F760 heterogeneity quantified through the calculation of the Rao's Q entropy metric.Results showed a strong underestimation of the functional diversity using the Rao's Q index based on NDVI and the CV of reflectance. In both cases, a weak correlation was found against the reference functional diversity map (r2 = 0.05, p < .001 and r2 = 0.04, p < .001, respectively). Conversely, the Rao's Q index calculated on F760 revealed similar patterns as the ones observed in the reference map and a better correlation (r2 = 0.5, p < .001). This corroborates the potential of far-red F for assessing the functional diversity of terrestrial ecosystems, opening unprecedented perspectives for biodiversity monitoring across different spatial and temporal scales.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Panigada, Cinzia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Celesti, Marco
|0 0000-0001-7249-7106
|b 2
700 1 _ |a Cogliati, Sergio
|0 0000-0002-7192-2032
|b 3
700 1 _ |a Colombo, Roberto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Migliavacca, Mirco
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 6
700 1 _ |a Rocchini, Duccio
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schüttemeyer, Dirk
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rossini, Micol
|0 0000-0002-6052-3140
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.rse.2020.111934
|g Vol. 247, p. 111934 -
|0 PERI:(DE-600)1498713-2
|p 111934 -
|t Remote sensing of environment
|v 247
|y 2020
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/885473/files/1-s2.0-S0034425720303047-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885473
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2018
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21