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A B S T R A C T

Plant functional diversity, defined as the range of plant chemical, physiological and structural properties within
plants, is a key component of biodiversity which controls the ecosystem functioning and stability. Monitoring its
variations across space and over time is critical in ecological studies. So far, several reflectance-based metrics
have been tested to achieve this objective, yielding different degrees of success. Our work aimed at exploring the
potential of a novel metric based on far-red sun-induced chlorophyll fluorescence (F760) to map the functional
diversity of terrestrial ecosystems. This was achieved exploiting high-resolution images collected over a mixed
forest ecosystem with the HyPlant sensor, deployed as an airborne demonstrator of the forthcoming ESA-FLEX
satellite. A reference functional diversity map was obtained applying the Rao's Q entropy metric on principal
components calculated on key plant functional trait maps retrieved from the hyperspectral reflectance cube.
Based on the spectral variation hypothesis, which states that the biodiversity signal is encoded in the spectral
heterogeneity, two moving window-based approaches were tested to estimate the functional diversity from
continuous spectral data: i) the Rao's Q entropy metric calculated on the normalized difference vegetation index
(NDVI) and ii) the coefficient of variation (CV) calculated on hyperspectral reflectance. Finally, a third moving
window approach was used to estimate the functional diversity based on F760 heterogeneity quantified through
the calculation of the Rao's Q entropy metric.
Results showed a strong underestimation of the functional diversity using the Rao's Q index based on NDVI

and the CV of reflectance. In both cases, a weak correlation was found against the reference functional diversity
map (r2 = 0.05, p < .001 and r2 = 0.04, p < .001, respectively). Conversely, the Rao's Q index calculated on
F760 revealed similar patterns as the ones observed in the reference map and a better correlation (r2 = 0.5,
p < .001). This corroborates the potential of far-red F for assessing the functional diversity of terrestrial eco-
systems, opening unprecedented perspectives for biodiversity monitoring across different spatial and temporal
scales.

1. Introduction

Understanding the ecological consequences of biodiversity loss re-
cently became a central issue in ecological research (Oliver et al., 2015;
Cardinale et al., 2012). The reason for that lies in the well-established
relationship existing between biodiversity and provision of ecosystem
services (e.g., Isbell et al., 2015; Musavi et al., 2017; Schwalm et al.,
2017; Midgley, 2012; Wang and Gamon, 2019) and in particular in the
critical role of biodiversity in controlling the ecosystem productivity
and its temporal stability (Isbell et al., 2009, 2015; Tilman et al., 1997).

Climate change and anthropogenic activities have already affected
biodiversity severely, leading to a significant loss of ecosystem func-
tions (Hooper et al., 2012; Oliver, 2016). For these reasons, the inter-
national community is engaging urgent actions to avert further biodi-
versity loss and degradation of ecosystem services, as framed e.g. in the
European Biodiversity Strategy for 2020 (European Commission, 2011).
Biodiversity is a multidimensional concept that includes taxonomic

diversity (the number and relative abundance of species), functional
diversity (reflecting species' ecological roles), phylogenetic diversity
(evolutionary differences of species), and genetic diversity (referring to
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genetic variation of species). In particular, the plant functional di-
versity, defined as the range of plant chemical, physiological and
structural properties within plants, takes into account the variability of
plant traits (PTs), which varies both inter- and intra-species. The un-
evenness of PTs constitutes a determinant of the ecosystem functioning
(Diaz et al., 2007; Musavi et al., 2015; Ruiz-Benito et al., 2014; Tilman
et al., 1997), thus quantifying the degree of functional variation in plant
communities constitutes a key challenge in biodiversity research
(Schweiger et al., 2018).
Although measuring biodiversity consistently across space and over

time is critical to engage conservation actions, this objective is still far
to be reached (Pettorelli et al., 2017). As a matter of fact, traditional
field sampling of biodiversity is generally considerably demanding in
terms of time, costs and human resources (Wang and Gamon, 2019,
Rocchini et al., 2019). Due to its inherent capacity of providing spa-
tially and temporally continuous information about the Earth's surface,
remote sensing has a great potential for detecting, quantifying, asses-
sing and forecasting biodiversity at different spatio-temporal scales in a
reliable, consistent and repeatable way (Lausch et al., 2016; Skidmore
and Pettorelli, 2015; Kuenzer et al., 2014; Pettorelli et al., 2016).
So far, the studies exploring biodiversity using remote sensing have

exploited three main approaches: i) mapping the distribution of habitat
or species, ii) estimating biodiversity through spectral diversity and iii)
estimating the functional diversity through plant functional traits
(Wang and Gamon, 2019).
The first approach consists in the exploitation of remote sensing

data to produce maps of habitat, functional types or species depending
on the spectral and spatial resolution of the data (Fassnacht et al., 2016;
Ghosh et al., 2014). These maps can also be used to assess the taxo-
nomic diversity using traditional biodiversity metrics based on the
species presence and abundance (e.g., species richness, Shannon's
index).
The second approach directly exploits the spectral dimensionality of

remote sensing data to infer the functional diversity from variations in
the spectral patterns across space (Asner et al., 2017; Gholizadeh et al.,
2019, Gholizadeh et al., 2018a, 2018; Nagendra, 2001). This approach
is based on the spectral variation hypothesis (SVH) (Palmer et al., 2000,
2002), which states that the biodiversity signal is encoded in the
spectral variability, therefore the larger the spectral heterogeneity is,
the higher is biodiversity. An advantage of the SVH approach is that the
spectral variability can be readily computed from remotely sensed data
without the need to map the species or to retrieve plant functional traits
(Rocchini et al., 2013). The spectral heterogeneity (and biodiversity in
turn) can be quantified through a number of statistical metrics applied
to full-spectra, vegetation indices or transformed spectra synthesizing
the spectral information in a principal component space (Wang and
Gamon, 2019). These metrics can be simple dispersion measures, e.g.
the coefficient of variation (CV) of spectral reflectance (Wang et al.,
2016), or more advanced measures based on the information theory,
e.g. the Rao's Q index (Rao, 1982; Botta-Dukát, 2005). Among the di-
versity metrics, the latter index was widely used as a measure of
functional diversity (e.g., Botta-Dukát, 2005; Scherer-Lorenzen et al.,
2007; Weigelt et al., 2008) due to its capacity to include both the re-
lative abundance of species and the functional differences within spe-
cies. Its strong potential as remote sensing-based measure to quantify
the functional diversity was demonstrated by recent studies (Rocchini
et al., 2019, Rocchini et al., 2016). Compared to simple metrics such as
the Shannon's index-which only accounts for the relative abundance of
each pixel value-the Rao's Q index considers the sum of all the pixel
pairwise distances in a spectral space, each of which is multiplied by the
relative abundance of each pair of pixels within the moving window
(Rao, 1982).
The third approach is based on the quantification of the functional

diversity through plant traits, which reflect phylogenetic components,
resource limitations, environmental conditions and photoprotection
strategies (Schneider et al., 2017; Schweiger et al., 2017). Plant traits

influence the absorption, scattering and transmission of the incoming
solar radiation, inducing variations in the optical properties of plants
that can be detected by optical remote sensing (Lausch et al., 2016).
Based on this link, plant traits such as foliar pigment content, leaf water
content and leaf area index can be retrieved from remotely sensed data
using physically based approaches, statistical models trained with
ground-measured plant traits or hybrid approaches (refer to Verrelst
et al., 2018 for a review). Recent developments in imaging spectroscopy
systems have greatly enriched the dimensionality of remote sensing
data (Asner et al., 2012; Thompson et al., 2017) and expanded the
range of detectable plant biochemical, physiological and structural
properties that can contribute to assess diversity (Hill et al., 2019; Ustin
and Gamon, 2010; Asner et al., 2012). Among them, recent studies
demonstrated the feasibility of retrieving sun-induced chlorophyll
fluorescence (F) from ultra-fine spectral resolution airborne imagery
(e.g., Rascher et al., 2015; Rossini et al., 2015; Middleton et al., 2017;
Tagliabue et al., 2019). F is a dynamic plant functional trait (Gamon
et al., 2019) that synthesizes the variability of multiple plant traits often
considered relatively stable and integrates information about the plant
physiological status. F is in fact a physical signal originating from the
core of the photosynthetic machinery. Together with heat dissipation, F
is a pathway that plants use to dissipate the excess of absorbed pho-
tosynthetically active radiation (APAR) not used for photochemistry
(Mohammed et al., 2019). Since the photosynthetic efficiency affects
the F emission, this link constitutes the rationale behind the use of F to
track variations in the plant functional state.
In this framework, the aim of this study is to test the potential of a

novel approach based on the use of F heterogeneity-defined as the
spatial variability of F across neighbouring pixels-as a measure of the
functional diversity of a mixed forest ecosystem. We hypothesize that F
might be a promising signal for mapping the functional diversity due to
its capacity to integrate information about plant trait variability and
plant physiology. The F signal is in fact related to the variability of key
leaf and canopy traits, such as nitrogen and chlorophyll concentration,
which strongly influence photosynthesis (Migliavacca et al., 2017;
Porcar-Castell et al., 2014). Moreover, F can track heterogeneous
physiological behaviours related to divergent downregulation strategies
(Ac et al., 2015; Paul-Limoges et al., 2018). While previous studies
conducted at the leaf level using active fluorescence measurements laid
the foundations for these hypotheses (Gamon et al., 2005; Gamon,
2015; Rascher et al., 2004; van der Tol et al., 2014), we aim at testing
the potential of passive sun-induced fluorescence in the detection of
functional diversity patterns. As far as we know, this is the first attempt
trying to exploit sun-induced fluorescence in the context of the func-
tional diversity estimation. We aim at answering the following research
questions:

• does far-red sun-induced chlorophyll fluorescence provide valuable
information to improve the diversity mapping compared to state-of-
the-art measures based on reflectance?
• does far-red sun-induced chlorophyll fluorescence provide valuable
information related to functional rather than taxonomic/species
diversity?

To achieve these objectives, high-resolution airborne images ac-
quired with the HyPlant imaging sensor (Rascher et al., 2015) over a
temperate mixed forest ecosystem were used to map the forest diversity
using different approaches. Firstly, the species richness and the Shan-
non's index calculated on a species classification map were used to
evaluate the taxonomic diversity across the study area. Secondly, three
different approaches were evaluated to estimate the functional di-
versity: i) the calculation of the Rao's Q index on sun-induced chlor-
ophyll fluorescence measured in the far-red (F760); ii) the calculation of
the Rao's Q index on the normalized difference vegetation index (NDVI)
(Tucker, 1979), which is widely used in ecological applications (e.g.,
Gamon et al., 1995; Pettorelli et al., 2005) and iii) the calculation of the
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CV of hyperspectral reflectance, which is a benchmark approach for the
diversity estimation using remotely sensed data (Wang et al., 2016;
Somers et al., 2015; Sakowska et al., 2019, Gholizadeh et al., 2019).
The heterogeneity maps obtained were compared against a reference
functional diversity map to evaluate the performances of the different
metrics as functional diversity measures.

2. Data and methods

2.1. Study site and field data acquisition

The site selected for this study is the Hardt Forest, a temperate forest
located in France (47°48′29“ N, 7°26’53” E; Mulhouse; Alsace). The
analysis was limited to a subset of the forest (i.e., ~90 ha) covered by
the airborne overpasses.
The Hardt Forest is dominated by the presence of broadleaved

species (~90%), with a sparse presence of deciduous and evergreen
coniferous ones (~10%) (Tagliabue et al., 2016). The most common
species in the main canopy layer are: European hornbeam (Carpinus
betulus L.), pedunculate and sessile oak (Quercus robur L., Quercus pet-
raea (Matt.) Liebl.), field maple (Acer campestre L.), small-leaved linden
(Tilia cordata Mill.), Scots pine (Pinus sylvestris L.) and European larch
(Larix decidua Mill.). The forest is structured in stands of at least 500 m
size, which are characterised by a relative variability in terms of
management stage. The regeneration areas, which are characterised by
the presence of young trees (mainly hornbeams and oaks) planted with
high density, are clearly distinguishable from the mature areas of the
forest, where the species variability is higher, and the stem density is
lower. The average diameter of the tree crowns is 10–15 m in the
mature forest and < 10 m in the regeneration stands.
The region where the forest is located is temperate, with an average

temperature of 22 °C in summer and of 4 °C in winter. The mean annual
rainfall is 680 mm, with a maximum typically occurring between May
and August.
A field campaign was conducted in the study site in the summer of

2013 to collect ground-based measurements to validate the airborne
products. Plant traits were sampled within sampling sites measuring
20 × 20 m2. The position of the sampling sites, hereafter referred to as
elementary sampling units (ESUs), was selected by forest experts along
the forest tracks and recorded using a high precision Geo-XT GPS
(Trimble, Sunnyvale, USA). The leaf chlorophyll content (LCC), leaf
mass per area (LMA) and leaf water content (LWC) were estimated from
destructive measurements on leaves collected in 12 ESU. In each ESU,
ten leaves were collected for each dominant species in the main canopy
layer (n ≃ 250). This sampling scheme only applies to broadleaf species,
since the coniferous species were only sparse in this area of the forest.
The samples were collected from sunlit leaves that were shotgun-sam-
pled from the top branches of the canopy and were immediately placed
in plastic bags that were then stored at −80 °C until the laboratory
analysis. The LCC (i.e., sum of chlorophyll a and b contents) was
quantified measuring the absorbance at 645, 662 and 710 nm using a
UVIKON XL spectrophotometer (BioTek Instruments, Winooski, USA)
after extracting the pigments with hydroxide carbonate magnesium
buffered with acetone. The extinction coefficients to quantify chlor-
ophyll a and b contents were taken from Lichtenthaler and Buschmann
(2001). The LMA and LWC were calculated after determining the fresh
weight (Wf) and dry weight (Wd) (i.e., after oven-drying for 24 h at
80 °C) of leaves as LMA = Wd/Area and LWC = (Wf-Wd)/Area, re-
spectively. The area was measured using a LI-3000 planimeter (LI-COR
Biosciences, Lincoln, USA). The LAI was estimated from digital hemi-
spherical photos using the CAN-EYE software (https://www6.paca.inra.
fr/can-eye/). The images - seven looking upward per ESU - were ac-
quired in correspondence of 14 ESUs using a Sigma Camera (Sigma
Corporation, Ronkonkoma, USA) equipped with a fisheye lens.

2.2. Airborne data acquisition and pre-processing

Hyperspectral images were acquired on June 16, 2013 using the
airborne imaging spectrometer HyPlant (Rascher et al., 2015). The
sensor was developed within the framework of the FLuorescence EX-
plorer (FLEX) mission preliminary activities and was specifically de-
signed as airborne demonstrator of the FLEX satellite. HyPlant is a line-
imaging push-broom scanner consisting of two modules: i) the Dual
Channel Imager (DUAL) covering the visible (VIS), near-infrared (NIR)
and shortwave infrared (SWIR) spectral regions (370–2500 nm) with a
FWHM of 4.0 nm (VIS-NIR) - 13.3 nm (SWIR) for the reflectance (ρ) and
vegetation indices (VIs) calculation; and ii) the Fluorescence Imager
(FLUO) covering the red and far-red spectral regions (670–780 nm) at
ultra-fine spectral resolution (FWHM≃0.25 nm) for the fluorescence
retrieval. The two modules operate synchronously, ensuring the spatial
matching of the DUAL and FLUO hyperspectral cubes.
The airborne acquisition started at 11:55 Central European Summer

Time (CEST) under clear sky conditions and was completed in ap-
proximately 157 s. The flight was set to 610 m above the ground level
(1 × 1 m2 ground sampling distance) with a heading of 195°.

HyPlant raw data were dark current subtracted, radiometrically
calibrated and geo-referenced with the CaliGeo software (Specim Ltd.,
Oulu, Finland) using the data recorded by the position and attitude
sensor during the acquisition. The DUAL data were atmospherically
corrected using the ATCOR-4 software (ReSe Applications GmbH,
Langeggweg, Switzerland) to obtain top-of-canopy reflectance
(Siegmann et al., 2019). The FLUO data were processed using a dedi-
cated processing-chain specifically developed to retrieve F. A shadow
mask obtained with a threshold based on red and near-infrared re-
flectance was applied to both the DUAL and FLUO images to exclude
the inter-crown shadows from the analysis.

2.3. Forest species mapping

The reflectance cube obtained from the HyPlant DUAL module was
used to map the forest species distribution over the study site. The
classification was performed through a supervised machine learning
method, targeting seven different tree species (i.e., Carpinus betulus L.,
Quercus robur L., Quercus petraea (Matt.) Liebl., Acer campestre L., Tilia
cordata Mill., Pinus sylvestris L., Larix decidua Mill.) grouped into six
classes: “Hornbeam”, “Oak”, “Maple”, “Linden”, “Pine” and “Larch”. An
additional “Defoliated trees” class was defined in order to detect trees,
mainly hornbeams and maples, affected by crown defoliation due to a
caterpillar infestation at the time of the campaign. Mature and re-
generation patches of the forest were classified separately. This choice
was motivated by the high variability of the spectral signal among trees
of the same species at different development stage, caused by differ-
ences in the leaf biochemical properties as well as in the canopy ar-
chitecture. The classification scheme described hereafter was repeated
likewise for both, masking out alternatively either the mature or the
regeneration stands. The training set was prepared selecting pure
spectral endmembers for each class by integrating the knowledge de-
rived from the field surveys and the visual interpretation of high re-
solution orthophotos. These endmembers consisted of polygons tar-
geting pure tree crowns over a wide patch of the study area in order to
capture the intra-specific spatial variability. Depending on the occur-
rence of the species and the crown size, 15 to 30 polygons, each con-
sisting of 6 to 10 pixels, were collected for each class, constituting a
training set of ~700 pixels. The training set was used to train a support
vector machine (SVM) algorithm with a radial basis function kernel
(Vapnik, 1995) at clustering the pixels into the defined classes. The
SVM is a non-parametric classifier based on the statistical learning
theory proposed by Vapnik and Chervonenkis (1971). The rationale
behind the classifier is the definition of an optimal n-dimensional hy-
perplane that maximises the separation among the classes while mini-
mising the misclassification errors (Vapnik, 1995). The SVM algorithms
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have been used increasingly in RS in the past few years because of their
effectiveness and suitability in handling high-dimensional data
(Melgani and Bruzzone, 2004; Mountrakis et al., 2011; Pal and Mather,
2005). In particular, they have been extensively applied for tree species
classification in different biomes using hyperspectral data, showing
outperforming accuracies compared to other classification methods
(Dalponte et al., 2009, 2013; Feret and Asner, 2013; Melgani and
Bruzzone, 2004; Pal and Mather, 2004). A relevant property of the
SVMs, making them suitable for hyperspectral data classification, is
their low sensitivity to the so-called Hughes phenomenon (Hughes,
1968). This effect consists in a decrease of the classification accuracy
when the ratio between the number of input features and the training
samples exceeds a certain threshold, due to the fact that the estimation
of the classifier parameters (e.g., the estimation of the covariance ma-
trices in the case of the Maximum Likelihood classifier) becomes
complicated. This phenomenon is frequent in RS because the avail-
ability of training samples is usually limited and is critical when using
hyperspectral data since it requires using feature reduction techniques
at the cost of a loss of information and time. The SVMs proved to be
unaffected by this issue (Camps-valls and Bruzzone, 2005; Melgani and
Bruzzone, 2004; Pal and Mather, 2004; Waske and Benediktsson,
2010), hence, all the features were used as input for the classifier.
For the accuracy assessment, a testing set composed of ~400 pixels

was selected on the image using a randomly stratified sampling scheme.
In order to ensure the representativeness of the testing sample for all
the classes, the numerosity of the testing sample was defined for each
class according to the abundance of the corresponding species in the
study area. Each testing sample was labelled through visual inter-
pretation and used as ground truth in the validation process. The
standard accuracy metrics (i.e., overall accuracy (OA), producer's ac-
curacy (PA) and user's accuracy (UA)) were calculated from the con-
fusion matrix generated by crossing the classification result with the
ground truths. The PA was calculated for each class as the ratio between
the number of correctly classified pixels and the total number of testing
samples. The UA was calculated for each class as the ratio between the
number of correctly classified pixels and the total number of pixels
assigned to that class. The OA was calculated as the ratio between the
number of correctly classified pixels and the total number of testing
samples.

2.4. Plant functional trait retrieval

Four key PTs were mapped exploiting the airborne hyperspectral
DUAL data cube. Based on their ecological relevance, we selected leaf
chlorophyll content (LCC), leaf area index (LAI), leaf water content
(LWC) and leaf mass per area (LMA). The selected traits were retrieved
from the reflectance data through a Lookup Table (LUT) based inver-
sion of the coupled leaf and canopy PROSPECT-4-INFORM radiative
transfer model (RTM) (Atzberger, 2000; Jacquemoud and Baret, 1990).
The RTM was parameterised based on previous knowledge about the
variability of the model input parameters in the forest and on the results
of a global sensitivity analysis. The model was run in forward to gen-
erate a LUT of 30,000 simulated spectra. Hence, the traits of interest
were retrieved by inverting the model with a LUT-based approach.
Regularisation options were used to minimise the drawbacks of ill-po-
sedness: LCC was retrieved using a logarithmic minimum contrast cost
function (Leonenko et al., 2013) and averaging the first ten solutions of
the inversion; LAI was retrieved with a divergence measure cost func-
tion formalised by Kullback and Leibler (1951) and averaging the ten
best solutions; LWC and LMA were obtained using the Root Mean
Square Error (RMSE) as cost function and averaging the ten best solu-
tions. The airborne retrievals were validated against the field data
collected close (± 1 day) to the airborne overpass. This comparison
showed consistency between the ground-based and airborne retrievals
for all traits (RMSELCC = 5.66 μg cm−2, RMSELAI = 0.51 m2 m−2,
RMSELWC = 0.0019 g cm−2, RMSELMA = 0.0035 g cm−2). Further

details about the validation can be found in Tagliabue et al. (2019).

2.5. Far-red fluorescence retrieval

The far-red fluorescence map used in this study was retrieved from
HyPlant ultra-fine resolution data at 760 nm (F760) based on the spectral
fitting method (SFM) (Cogliati et al., 2015) adapted to HyPlant ob-
servations (Cogliati et al., 2018). The description of the retrieval ap-
proach can be found in Tagliabue et al. (2019). The map was validated
against ground-based F760 retrievals measured in correspondence of
seven different vegetated targets close to the airborne overpasses. This
comparison showed a good agreement between the ground-based and
airborne retrievals (RMSE = 0.41 mW m−2 sr−1 nm−1) (Tagliabue
et al., 2019).

2.6. Diversity measures from remotely sensed data

The biodiversity across the study area was measured using three
different approaches: i) estimating the taxonomic diversity through the
forest species map; ii) estimating the functional diversity through the
spectral diversity and iii) estimating the functional diversity through
plant functional trait and sun-induced fluorescence variability.
A moving window approach was used to derive the above-men-

tioned diversity measures from the airborne maps. For each diversity
measure, different moving window sizes (i.e., 3 × 3, 5 × 5 and 9 × 9
pixels) were tested to evaluate the dependency of the results on the size
of the moving window. Results are shown for the 9 × 9 pixels size
which allows capturing both the intra- and inter-crown variability.
The taxonomic diversity was estimated using traditional metrics

calculated on the forest species map: the species richness and the
Shannon's index (H) (Shannon, 1948). The species richness was calcu-
lated for each pixel as the number of different tree species within the
considered moving window. The Shannon's index was calculated for
each pixel of the species classification map as:

=
=

H p pln
i

n

i i
1 (1)

where n is the number of species and p is the proportion of the area
occupied by the species i respect to the moving window size.
The functional diversity across the study area was estimated using

three approaches based on spectral heterogeneity, functional traits and
sun-induced fluorescence heterogeneity.
Firstly, two different moving window-based approaches were ap-

plied to HyPlant-derived products to estimate the functional diversity
based on the spectral variability hypothesis: the calculation of the Rao's
quadratic entropy (Q) (Rao, 1982; Botta-Dukát, 2005; Ricotta, 2005) on
NDVI and the calculation of the CV on hyperspectral reflectance.
The Rao's Q index is a popular multidimensional functional diversity

index, which is traditionally computed on functional attributes mea-
sured in the field. The index is calculated as:

=
= =

Q d p p
i

n

j

n
ij i j1 1 (2)

where dij is the dissimilarity between two values i and j based on the
Euclidean distance, and pi and pj are the relative proportions of the
values i and j, respectively, within the considered moving window.
Based on its definition, the Rao's Q index can be described as the ex-
pected spectral difference in the numerical value between two pixels
drawn randomly with replacement from the pixels within a moving
window. Respect to the Shannon's index that only accounts for the re-
lative abundance of each value, the Rao's Q index also considers the
overall spectral difference among the pixels within a moving window.
This allows us to know if two pixels drawn randomly from the moving
window are different and to quantify how much different they are.
Among vegetation indices, NDVI was used because it is a benchmark
index in most studies aimed at the remote quantification of biodiversity
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using index-based methods (see Wang and Gamon, 2019 for a review).
Nevertheless, other vegetation indices were tested, which yielded si-
milar results to those obtained with NDVI.
The CV of spectral reflectance was calculated as the average CV for

all the wavelengths between 400 and 2500 nm, as:

=
=
=

CV
n

sd
mean400

2500 ( )
( )

(3)

where sd(ρλ) and mean(ρλ) are the standard deviation and the mean
of reflectance at the wavelength λ, respectively, and n is the number of
spectral bands.
Secondly, the Rao's Q index was calculated on plant functional traits

to derive a reference functional diversity map. Here, the Rao's Q index
was applied to the functional trait maps retrieved from the DUAL hy-
perspectral reflectance through inversion of the coupled PROSPECT-4-
INFORM radiative transfer model. A Principal Component Analysis
(PCA) was used to combine LCC, LAI, LWC and LMA while removing
the statistical redundancy in the multiple selected traits. Before calcu-
lating the PCA, all traits were re-scaled between 0 and 1 to homogenise
the units. The Rao's Q diversity was calculated on the first three PCs,
which together explained 96% of the total variance of the four selected
PTs. The calculation was performed for the entire image within the R
software (R Core Team, 2019) using the spectralrao function stored
in the GitHub repository https://github.com/mattmar/spectralrao
(Rocchini et al., 2016). The mode multidimension was set to use
multiple matrices as input for the Rao's Q diversity calculation.
Finally, the Rao's Q index was calculated on sun-induced chlor-

ophyll fluorescence measured in the far-red (F760).
The HyPlant-derived products obtained from the HyPlant DUAL (i.e.,

hyperspectral reflectance and NDVI) and FLUO modules (i.e., F760) are
shown in Fig. 1.
Both NDVI and F760 were converted to 8 bits and re-scaled between

0 and 1 before calculating the Rao's Q index to harmonize the range and
variability of the two variables. The calculation of the Rao's Q index
was performed in R (R Core Team, 2019) using the spectralrao
function as for the reference map based on plant functional traits.

The performances of the F760-based Rao's Q index proposed in this
study and of two state-of-the-art approaches based on spectral diversity
(i.e., CV of reflectance and NDVI-based Rao's Q index) in estimating the
functional diversity were finally evaluated by fitting regression models
against the reference PC-based Rao's Q index map. The statistical ana-
lysis was performed in R (R Core Team, 2019). To avoid spatial auto-
correlation, the models were fitted on 1000 pixels extracted fully ran-
domly from the images with a minimum distance of 15 m among them.

3. Results

3.1. Mapping of species and species diversity

The classification process applied on HyPlant high-resolution ima-
gery enabled us to produce a thematic map of the distribution of the
main tree species in the Hardt forest (Fig. 2a).
Table 1 shows the confusion matrix obtained crossing the ground

truth with the classification results. The overall accuracy (OA) obtained
was 75.1%, while the producer's (PA) and user's (UA) accuracies ranged
between 59 and 94% and between 63 and 97%, respectively, depending
on the considered class. Scots pine was mapped with the highest ac-
curacy due to its spectral dissimilarity compared to the broadleaves,
which were characterised by a higher misclassification. The defoliated
tree class showed a high UA (89.2%), but the low PA (58.6%) high-
lighted that the defoliated trees were sometimes not identified, prob-
ably depending on the degree of defoliation.
The thematic product obtained highlighted an uneven abundance

and distribution of the different forest species. Overall, the most
common species were oak and hornbeam, but the two species were
characterised by a different spatial distribution. While oaks were found
to prevail over hornbeams in the mature forest, the regeneration areas
were overwhelmingly dominated by hornbeam. Pine was mainly lim-
ited to confined areas of the forest (e.g., the mature forest patch in the
left-central part of the image). Maple, linden and larch presented a
scattered distribution throughout the entire forest. The defoliated trees
were widespread across the mature forest, but were almost absent in the

Fig. 1. HyPlant-derived products used as input for the estimation of the functional diversity: a) Hyperspectral reflectance (false colour composite of near-infrared
(NIR), red (R) and green (G) bands in the R, G and B channels, respectively), b) NDVI and c) F760. The map projection is UTM zone 32 N with datum WGS84. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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regeneration stands.
The species richness and the Shannon's index calculated on the

species map are shown in Fig. 2b and Fig. 2c, respectively. Both the
diversity metrics based on the spatial distribution of the tree species
across the site showed a low heterogeneity and range of variation across
space. The patterns are consistent in the two images and reflect a low
biodiversity in the study site in terms of species composition.

3.2. Estimation of the reference functional diversity map based on retrieved
plant functional traits

An RGB composite of the principal components (PCs) obtained
performing a PCA on key forest traits (i.e., LCC, LAI, LWC and LMA) is
shown in Fig. 3. Different patterns in the forest are clearly distin-
guishable in the map (Fig. 3a). These patterns are related to the di-
versity in terms of the biochemical and structural traits mapped and
reflect the differences in the ecological functioning. Magenta-orange
areas correspond to high values in the first PC (PC1), which is strongly
related to LAI and moderately correlated with LCC and LWC. These

patches correspond to regeneration areas of the forest, where the trees
are younger, and the canopy density is higher. Green-bluish colours,
indicating a high influence of the second (PC2) and partly of the third
PC (PC3), dominate the mature part of the forest. The sub-regions
marked in Fig. 3 with “A”, “B” and “C” (i.e., white squares) are re-
presentative of three different conditions encountered across the area.
“A” marks an area at the edge between the regeneration and mature
forest, where the managed plantation is characterised by high values in
PC1 and PC2. “B” is a 100% mature forest area where the canopy is
complexly structured. “C” marks a mixed regeneration/mature forest
area where the regeneration stand presents high values in PC1 and PC3
and the mature stand has a different species composition compared to
“A”.
PC1, which explained 77% of the total variance, was strongly

dominated by LAI with some influence of LCC and LWC, as shown by
the loadings and explained variance bar plots displayed in Fig. 3b and e.
LCC showed the highest contribution in PC2 (Fig. 3c and f), which
explained 11% of the variance. LMA, LWC and LAI also drove some of
the variance in PC2, but with a negative contribution respect to LCC.

Fig. 2. a) Thematic map of the dominant tree species in the Hardt forest obtained with the support vector machine (SVM) algorithm; b) Species richness calculated
from the species map using a moving window of 9 × 9 pixels. The species richness is expressed as number of species; c) Shannon's index calculated from the species
map using a moving window of 9 × 9 pixels. High Shannon's index values correspond to high taxonomic diversity. The map projection is UTM zone 32 N with datum
WGS84.

Table 1
Confusion matrix obtained from the validation scheme. Columns represent the true classes while rows represent the classification results. The % of correctly classified
pixels is reported along the upper-left to lower-right diagonal. The omission errors (% of pixels that belong to a class but were classified into another) are reported
down the columns, while the commission errors (% of pixels that were classified into a class but do not belong to that class) are reported across the rows. The user's
(UA) and producer's (PA) accuracies are reported in the last column and row, respectively. The overall accuracy (OA) is also displayed in the lower-right corner.

Ground truth

SVM Classification Hornbeam Oak Linden Maple Pine Def. trees Tot UA
Hornbeam 78.4% 4.9% 0% 0% 0% 14% 19% 75.3%
Oak 16.2% 77.5% 12.5% 0% 7.1% 24% 30.9% 63.2%
Linden 1.3% 8.8% 76.8% 6.2% 0% 0% 13.6% 78.2%
Maple 2.7% 5.9% 10.7% 93.7% 0% 2% 11.4% 65.2%
Pine 0% 0% 0% 0% 85.7% 1% 9.1% 97.3%
Def. trees 1.3% 2.9% 0% 0% 7.1% 58.6% 16.1% 89.2%
Tot 100% 100% 100% 100% 100% 100% 100%
PA 78.4% 77.5% 76.8% 93.7% 85.7% 58.6% OA = 75.1%
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PC3, which explained 8% of the variance, was strongly driven by LMA,
with a minor contribution of LWC, LAI and LCC (Fig. 3d and g). Overall,
PC1, PC2 and PC3 explained 96% of the variance in the selected traits.
The functional diversity map obtained applying the Rao's Q di-

versity metric on the PCs calculated on plant functional traits is shown
in Fig. 4a. The patterns in the map revealed a high diversity in the
forest, highlighting the presence of patches characterised by different
entropy. The highest Rao's Q values were observed in the regeneration
stands of the forest, which were also characterised by a considerable
spatial variability. In contrast, the mature forest appeared in general
more homogeneous, but high diversity spots were also observed. This
map constitutes the reference against which the functional diversity
maps based on the spectral and sun-induced fluorescence heterogeneity
will be discussed.
The use of moving windows of different sizes (from 3 × 3 pixels up

to 9 × 9 pixels) to calculate the Rao's Q diversity did not significantly
affect the observed entropy patterns (r2 = 0.88, p < .001 and
r2 = 0.71, p < .001 comparing the Rao's Q index calculated using a
moving window of 9 × 9 against moving windows of 5 × 5 and 3 × 3
pixels, respectively).

3.3. Estimation of functional diversity based on spectral and sun-induced
fluorescence heterogeneity

The functional diversity map obtained as CV of spectral reflectance
between 400 and 2500 nm is shown in Fig. 4b. The map showed a clear
separation between mature and regeneration forest, with generally low
diversity values in the young stands, which are located in the middle

and close to the top of the image. The lowest diversity was observed in
correspondence of the young patches of the forest, while the mature
forest was characterised by a considerable variability.
The functional diversity maps obtained calculating the Rao's Q

index on NDVI and F760 are shown in Fig. 4c and d, respectively. The
NDVI-based Rao's Q was characterised by generally low values across
the entire image, with patterns similar to those observed in the CV of
reflectance. In particular, very low entropy values were observed in the
regeneration stands, with Rao's Q values around 0.008–0.01. The
highest diversity was observed in correspondence of the mature areas of
the forest characterised by a significant presence of coniferous species,
e.g., the area on the left in respect to the regeneration stand in the
centre of the image. In these areas, the Rao's Q diversity reached values
up to ~0.05. The F760-based Rao's Q showed a considerably larger
heterogeneity across the image. The regeneration stands showed the
highest entropy (~0.2), but high entropy values were also observed in
the mature forest. Overall, the F760-based Rao's Q was substantially
higher than the NDVI-based Rao's Q.

3.4. Comparison between the reference and the spectral and sun-induced
fluorescence heterogeneity maps

The results of the regression analysis performed between the func-
tional diversity maps based on the spectral variability (i.e., CV of re-
flectance, NDVI-based Rao's Q index), the one based on the Rao's Q
index calculated on F760 and the reference PC-based functional diversity
map are shown in Fig. 5. A weak correlation was observed between the
reference PC-based Rao's Q index and the CV of reflectance (r2 = 0.04,

Fig. 3. a) RGB composite of the first three Principal Components (PCs) derived from the Principal Component Analysis performed on leaf chlorophyll content (LCC),
leaf area index (LAI), leaf water content (LWC) and leaf mass per area (LMA) retrieved from the airborne hyperspectral images. The colours are the result of the
combination of the first (PC1), second (PC2) and third (PC3) principal components in the R, G and B channels, respectively. The sub-regions marked with “A”, “B”
and “C” (white squares) are representative of three different conditions encountered across the area. “A” marks an area at the edge between the regeneration and
mature forest, where the managed plantation is characterised by high values in PC1 and PC2. “B” is a 100% mature forest area where the canopy is complexly
structured. “C” marks a mixed regeneration/mature forest area where the regeneration stand presents high values in PC1 and PC3 and the mature stand has a
different species composition compared to “A”. On the right, bar plots of the loadings of b) PC1, c) PC2 and d) PC3 and of the explained variance of e) PC1, f) PC2 and
g) PC3. The map projection is UTM zone 32 N with datum WGS84.
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Fig. 4. Functional diversity maps obtained using different metrics calculated with a 9 × 9 pixels moving window: a) Rao's Q entropy calculated on principal
components (PCs); b) average coefficient of variation (CV) calculated for all wavelengths from 400 to 2500 nm; c) Rao's Q entropy calculated on NDVI and d) Rao's Q
entropy calculated on F760. The map projection is UTM zone 32 N with datum WGS84.
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p < .001) and between the PC-based Rao's Q index and the NDVI-
based Rao's Q index (r2 = 0.05, p < .001). Conversely, the Rao's Q
index calculated on F760 showed a strong positive correlation with the
reference PC-based map (r2 = 0.5, p < .001). The relationship be-
tween the latter two variables was also positive in terms of absolute
Rao's Q index values. A relative bias of 10.8% was observed between
the F760-based and the PC-based Rao's Q index, while the Rao's Q index
based on NDVI showed a bias of −83.5% respect to the reference PC-
based Rao's Q index.

4. Discussion

Measuring biodiversity across space and over time is a pivotal ob-
jective in ecology. In this respect, remote sensing can be a powerful tool
as it provides the means to overcome several drawbacks related to the
traditional biodiversity estimation approaches based on field data
(Wang and Gamon, 2019; Pettorelli et al., 2016; Nagendra, 2001).
However, there is no agreement yet on the remotely sensed data and
metrics to be used to infer biodiversity, as well as the pros and cons of
different products (i.e., reflectance, VIs and F) to map biodiversity
(Skidmore and Pettorelli, 2015; Ma et al., 2019; Turner, 2014).
In this study, we tested different approaches to estimate the taxo-

nomic and functional diversity of a mid-latitude forest ecosystem. The
taxonomic diversity across the study area was inferred calculating the
species richness and the Shannon's index on a species map obtained
using a semi-automatic classification approach. This traditional ap-
proach for assessing biodiversity provides information about the species
distribution based on their taxonomic identity and can be relevant for
e.g. monitoring the biodiversity patterns and detecting species changes
or losses over time. However, it cannot provide any information about
the intra-specific variability in functional traits, which constitutes a
determinant of the functional diversity and presumably it is more re-
lated to the ecosystem stability rather than to the taxonomic diversity
alone (Díaz and Cabido, 2001). As a matter of fact, the functional traits
might vary within the same species as much as between different spe-
cies; vice versa, different species might be characterised by similar
functional traits thus not contributing to the functional diversity (Ma
et al., 2019; Schneider et al., 2017). For this reason, disregarding the
intra-specific variability might strongly risk either masking or over-
estimating the functional diversity. Schneider et al. (2017) further
suggested that in relatively species-poor temperate forests, such as the
one analysed in this study, ignoring the functional diversity typically
leads to a strong underestimation of biodiversity. This statement was
confirmed by our findings, which showed that the use of diversity

metrics based on the species composition led to diametrically opposed
results compared to their application to remotely sensed, spatially
continuous variables capable of grasping the intra-specific variability of
PTs.
However, applying the entropy metrics to continuous RS data under

the spectral variation hypothesis (Palmer et al., 2000) is not the only
requisite to properly map the functional diversity. In order to capture
all the intra-specific variability, two other critical factors need to be
addressed: the choice of the entropy metric to be used to infer the
functional diversity and the spectral variable to be used as input for the
calculation. In this study, we used the Rao's Q index that was found to
be a good performing indicator of the spatial heterogeneity compared
to simpler metrics that do not consider the pairwise numerical differ-
ence between the values encountered within the moving window
(Rocchini et al., 2016; Rocchini et al., 2018, 2018b; Rocchini et al.,
2019). Regarding the choice of the spectral variable to be used to infer
the functional diversity, it must be considered that RS offers a variety of
different tools. So far, different approaches have been proposed to
synthesize the intra-specific variability of PTs, e.g., the use of VIs re-
lated to the vegetation structure and greenness (Rocchini et al., 2016;
Rocchini et al., 2018, 2018b) and the use of spatialised retrievals of PTs
(Schneider et al., 2017). Regardless of the methodology used to quan-
tify biodiversity, both approaches are essentially based on reflectance,
i.e., on the amount of radiation reflected by vegetation as a function of
its biochemical and structural properties. In this study, we tested a
completely novel approach for assessing the functional diversity based
on the exploitation of the F emission. The strength of the F signal relies
in its inherent capacity of providing insights into the ecosystem func-
tioning (refer to Mohammed et al., 2019 for a review). Since F is linked
to photochemistry being one of the two mechanisms of dissipating the
excess of absorbed light, F carries information on the light use effi-
ciency, which constitutes the unknown in the relationship linking the
APAR to the gross primary productivity (Porcar-Castell et al., 2014).
Our results demonstrated the potential of using F to map the func-

tional diversity over reflectance or traditional VIs used in ecology (e.g.,
Wang et al., 2016; Féret and Asner, 2014). Compared to the reflectance-
based approaches tested, the use of the F760-based Rao's Q metric
showed the highest correlation against the PC-based Rao's Q index used
as reference (r2 = 0.5, p < .001). Conversely, the average CV of re-
flectance and the NDVI-based Rao's Q index only explained a small part
of the variance in the functional diversity patterns (r2 = 0.04,
p < .001 and r2 = 0.05, p < .001, respectively).
In terms of patterns, both the reflectance- and NDVI-based func-

tional maps clearly showed a strong underestimation of the entropy

Fig. 5. Relationships between: a) Rao's Q index calculated on principal components (PCs) computed on plant functional traits and average coefficient of variation
(CV) of reflectance, b) PC-based Rao's Q index and NDVI-based Rao's Q index and c) PC-based Rao's Q index and F760-based Rao's Q index. The analysis is based on
1000 pixels extracted fully randomly from the images with a minimum distance of 15 m among them. The rainbow colour scale represents the point density. The
black solid curves correspond to linear models fitted between the paired variables.
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across the study area compared to the PC- and F-based maps (Fig. 4b
and c). This was particularly evident in the regeneration stands, where
the extremely low entropy obtained using the approaches based on
reflectance highlighted that reflectance cannot grasp most of the het-
erogeneity in the functional diversity. The fact that this effect is em-
phasized in the regeneration patches is probably related to the satur-
ating effect of near-infrared reflectance in these areas, which is related
to the high biomass and compact structure of the canopy in the man-
aged stands. This suggests that F760 might be a powerful tool for
mapping the functional diversity especially in environments char-
acterised by dense vegetation with high biomass and greenness (e.g.,
tropical and boreal forest ecosystems). This hypothesis is underpinned
by previous studies conducted in such environments using active
fluorescence measurements. Gamon et al. (2005) used optical indices,
active fluorescence measurements and gas exchange measurements to
investigate the photosynthetic performance of tropical forest canopies.
While optical indices such as NDVI and simple ratio were closely related
to the canopy structure and APAR of different species, they were not
able to capture their heterogeneous physiological behaviour. Con-
versely, chlorophyll fluorescence, measured using active measure-
ments, was able to detect divergent downregulation strategies among
evergreen species. Similarly, Rascher et al. (2004) investigated the
functional diversity of photosynthesis in tropical rainforest mesocosms
under drought stress, observing that chlorophyll fluorescence was able
to capture the heterogeneous response of individual rainforest trees
expressing different downregulation strategies. While these studies
showed the possibility to detect variations related to divergent down-
regulation mechanisms using active fluorescence, the potential of sun-
induced chlorophyll fluorescence in this respect needs to be further
tested in dedicated studies performed in stress conditions.
In this study, the better performance of F760 in predicting the

functional diversity compared to NDVI is largely explained by the
strong influence of the variability of PTs on the F signal. While NDVI is
completely driven by the APAR, which is a function of the green bio-
mass of vegetation (i.e., LAI), F760 carries information on APAR as well
as on other critical drivers of the ecosystem functioning. In particular,
the F760 signal is strongly influenced by LCC and LMA, as shown in the
sensitivity analysis performed by Verrelst et al. (2015). LCC has been
shown to be related to the maximum carboxylation rates (Vcmax) (e.g.
Houborg et al., 2013). Vcmax has been shown to influence the F
emission (Frankenberg and Berry, 2018, Martini et al., 2019,
Migliavacca et al., 2017). Moreover, LCC also scales positively with the
leaf nitrogen (Niinemets et al., 1999; Croft et al., 2017), while LMA
scales negatively with the leaf nitrogen, as demonstrated by the leaf
economics spectrum (LES) (Wright et al., 2004; Osnas et al., 2013) and
here observed in the opposed contribution of LMA and LCC on PC2
(Fig. 3c). PC2 and PC3 are strongly driven by LCC and LMA, respec-
tively, meaning that a considerable portion of the variability in the
reference functional diversity map is determined by the variation of
LCC and LMA. Given the considerations above, our results show that
F760 is a promising indicator of functional diversity, given the capability
of F of capturing the spatial variability of photosynthesis, which is ul-
timately influenced by functional traits such as LCC, and LMA.
It is worth noting that the spatial scale of this study might foster the

spectral diversity-functional diversity relationships observed. In fact,
the moving window of 9 × 9 pixels applied to the high spatial
resolution HyPlant data (i.e., 1 × 1 m2) allowed detecting both intra-
and inter-crown variations in the functional traits, enhancing the de-
tection of biodiversity patterns. In our study, the functional diversity
map estimated using a moving window of 9 × 9 pixels correlates quite
well with the one estimated using a moving window of 3 × 3 pixels
(r2 = 0.71, p < .001). Such a small window size (3 × 3) allows
tracking the intra-crown variability, so the good correlation between
the above-mentioned maps suggests that the 9 × 9 maps are capturing
a lot of intra-crown variability plus some inter-crown variability. The
possibility to detect the intra-crown variability of functional traits may

not be that strong when the spatial resolution is of the same order or
larger than the tree crown size, since the intra-crown variability would
be integrated in the pixel signal (Féret and de Boissieu, 2020). The
biodiversity estimation based on the spectral heterogeneity is also ty-
pically hampered by the influence of confounding factors such as the
presence of shadows or soil background (Gholizadeh et al., 2018; Wang
et al., 2018). These elements increase the spectral heterogeneity, po-
tentially leading to misleading conclusions. In this study, the avail-
ability of imaging spectroscopy data at high spatial resolution mini-
mised this issue, since these confounding elements were excluded from
the analysis. On the other hand, the exploitation of airborne data in-
trinsically limits the possibility to monitor biodiversity at large spatio-
temporal scales. This recalls the need of integrating remote sensing data
from multiple sources as well as in situ observations of functional traits
and species distribution in order to detect and explain the biodiversity
patterns at the global scale (Jetz et al., 2016). The rapid increase of the
availability of Earth Observation satellites is already pushing forward in
this direction, but future missions able to monitor the plant traits and
functions at the global scale are still considered a priority of the sci-
entific community (Jetz et al., 2016; Ma et al., 2019; Somers et al.,
2015). In this respect, the ESA-FLEX satellite mission (Drusch et al.,
2017), which will be specifically dedicated to observing F globally at
unprecedented high spatial resolution (i.e., 300 × 300 m2), might be a
promising candidate for advancing the understanding and monitoring
of the functional diversity across the Earth. However, previous studies
indicate that the power of detecting biodiversity through spectral
variability varies with spatial scales (Hakkenberg et al., 2018) and pixel
size (Rocchini, 2007). Thus, we might expect that the ESA-FLEX pixels
are too coarse for directly assessing biodiversity. The increasing avail-
ability of hyperspectral data at high spatial resolution provided by new
spaceborne sensors (e.g., ASI-PRISMA, DLR-DESIS) might provide the
means to overcome this issue. Hyperspectral observations might in fact
be exploited in the future to either downscale the F signal using ma-
chine learning techniques (Duveiller and Cescatti, 2016; Wen et al.,
2020) or unmix the contribution of shadows and soil background
(Asner and Lobell, 2000; Asner and Heidebrecht, 2002).

5. Conclusions

In this study, multiple approaches for mapping the diversity of a
mixed forest ecosystem were tested exploiting remotely sensed high-
resolution HyPlant imagery. Firstly, we used a classic approach for es-
timating the taxonomic diversity across the forest. The hyperspectral
reflectance cube was used to classify the forest species with a semi-
automatic approach, and two traditional biodiversity metrics (i.e.,
species richness and Shannon's index) were calculated based on the
species map obtained. Secondly, we tested two approaches for assessing
the functional diversity directly through the spectral diversity (the
calculation of the Rao's Q entropy metric on NDVI and the calculation
of the CV of hyperspectral reflectance). Finally, we explored for the first
time the potential of using F760 heterogeneity, quantified through the
calculation of the Rao's Q entropy metric on F760, to estimate the
functional diversity.
Our results strongly support the use of F760 heterogeneity as a

synthetic measure of the diversity of terrestrial ecosystems. The ex-
ploitation of the F760 signal in fact outperformed reflectance and re-
flectance-based indices for estimating the functional diversity across the
study area. Furthermore, evidence was shown that the F760 hetero-
geneity carries information related to the functional diversity rather
than the taxonomic diversity.
This opens unprecedented perspectives for assessing biodiversity

from remote, paving the way of future studies aimed at exploring the
F760 diversity-biodiversity links at different spatial and temporal scales
and across biomes.
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