000885477 001__ 885477
000885477 005__ 20220930130254.0
000885477 0247_ $$2doi$$a10.3390/rs12101624
000885477 0247_ $$2Handle$$a2128/26203
000885477 0247_ $$2altmetric$$aaltmetric:82529821
000885477 0247_ $$2WOS$$aWOS:000543394800091
000885477 037__ $$aFZJ-2020-03860
000885477 041__ $$aEnglish
000885477 082__ $$a620
000885477 1001_ $$0P:(DE-Juel1)178996$$aVargas, Juan Quirós$$b0$$eCorresponding author
000885477 245__ $$aUnmanned Aerial Systems (UAS)-Based Methods for Solar Induced Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging Spectrometers: State of the Art
000885477 260__ $$aBasel$$bMDPI$$c2020
000885477 3367_ $$2DRIVER$$aarticle
000885477 3367_ $$2DataCite$$aOutput Types/Journal article
000885477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615215175_9175
000885477 3367_ $$2BibTeX$$aARTICLE
000885477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885477 3367_ $$00$$2EndNote$$aJournal Article
000885477 520__ $$aChlorophyll fluorescence (ChlF) information offers a deep insight into the plant physiological status by reason of the close relationship it has with the photosynthetic activity. The unmanned aerial systems (UAS)-based assessment of solar induced ChlF (SIF) using non-imaging spectrometers and radiance-based retrieval methods, has the potential to provide spatio-temporal photosynthetic performance information at field scale. The objective of this manuscript is to report the main advances in the development of UAS-based methods for SIF retrieval with non-imaging spectrometers through the latest scientific contributions, some of which are being developed within the frame of the Training on Remote Sensing for Ecosystem Modelling (TRuStEE) program. Investigations from the Universities of Edinburgh (School of Geosciences) and Tasmania (School of Technology, Environments and Design) are first presented, both sharing the principle of the spectroradiometer optical path bifurcation throughout, the so called ‘Piccolo-Doppio’ and ‘AirSIF’ systems, respectively. Furthermore, JB Hyperspectral Devices’ ongoing investigations towards the closest possible characterization of the atmospheric interference suffered by orbital platforms are outlined. The latest approach focuses on the observation of one single ground point across a multiple-kilometer atmosphere vertical column using the high altitude UAS named as AirFloX, mounted on a specifically designed and manufactured fixed wing platform: ‘FloXPlane’. We present technical details and preliminary results obtained from each instrument, a summary of their main characteristics, and finally the remaining challenges and open research questions are addressed. On the basis of the presented findings, the consensus is that SIF can be retrieved from low altitude spectroscopy. However, the UAS-based methods for SIF retrieval still present uncertainties associated with the current sensor characteristics and the spatio-temporal mismatching between aerial and ground measurements, which complicate robust validations. Complementary studies regarding the standardization of calibration methods and the characterization of spectroradiometers and data processing workflows are also required. Moreover, other open research questions such as those related to the implementation of atmospheric correction, bidirectional reflectance distribution function (BRDF) correction, and accurate surface elevation models remain to be addressed
000885477 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000885477 588__ $$aDataset connected to CrossRef
000885477 7001_ $$00000-0002-6454-5654$$aBendig, Juliane$$b1
000885477 7001_ $$0P:(DE-HGF)0$$aMac Arthur, Alasdair$$b2
000885477 7001_ $$0P:(DE-Juel1)145906$$aBurkart, Andreas$$b3
000885477 7001_ $$0P:(DE-HGF)0$$aJulitta, Tommaso$$b4
000885477 7001_ $$00000-0003-3299-4380$$aMaseyk, Kadmiel$$b5
000885477 7001_ $$00000-0001-8307-2584$$aThomas, Rick$$b6
000885477 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b7$$ufzj
000885477 7001_ $$00000-0002-6052-3140$$aRossini, Micol$$b8
000885477 7001_ $$00000-0001-7249-7106$$aCelesti, Marco$$b9
000885477 7001_ $$0P:(DE-HGF)0$$aSchüttemeyer, Dirk$$b10
000885477 7001_ $$00000-0001-9451-6769$$aKraska, Thorsten$$b11
000885477 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b12$$ufzj
000885477 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b13
000885477 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs12101624$$gVol. 12, no. 10, p. 1624 -$$n10$$p1624 -$$tRemote sensing$$v12$$x2072-4292$$y2020
000885477 8564_ $$uhttps://juser.fz-juelich.de/record/885477/files/Invoice_remotesensing-788248.pdf
000885477 8564_ $$uhttps://juser.fz-juelich.de/record/885477/files/remotesensing-12-01624.pdf$$yOpenAccess
000885477 8767_ $$8remotesensing-788248$$92020-05-13$$d2020-05-18$$eAPC$$jZahlung erfolgt$$premotesensing-788248$$zBelegnr. 1200153317, Author discount code
000885477 909CO $$ooai:juser.fz-juelich.de:885477$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000885477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178996$$aForschungszentrum Jülich$$b0$$kFZJ
000885477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b7$$kFZJ
000885477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b12$$kFZJ
000885477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b13$$kFZJ
000885477 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000885477 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885477 9141_ $$y2020
000885477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000885477 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885477 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2018$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885477 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-17
000885477 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000885477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000885477 920__ $$lyes
000885477 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000885477 980__ $$ajournal
000885477 980__ $$aVDB
000885477 980__ $$aI:(DE-Juel1)IBG-2-20101118
000885477 980__ $$aAPC
000885477 980__ $$aUNRESTRICTED
000885477 9801_ $$aAPC
000885477 9801_ $$aFullTexts