001     885477
005     20220930130254.0
024 7 _ |a 10.3390/rs12101624
|2 doi
024 7 _ |a 2128/26203
|2 Handle
024 7 _ |a altmetric:82529821
|2 altmetric
024 7 _ |a WOS:000543394800091
|2 WOS
037 _ _ |a FZJ-2020-03860
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Vargas, Juan Quirós
|0 P:(DE-Juel1)178996
|b 0
|e Corresponding author
245 _ _ |a Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging Spectrometers: State of the Art
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615215175_9175
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chlorophyll fluorescence (ChlF) information offers a deep insight into the plant physiological status by reason of the close relationship it has with the photosynthetic activity. The unmanned aerial systems (UAS)-based assessment of solar induced ChlF (SIF) using non-imaging spectrometers and radiance-based retrieval methods, has the potential to provide spatio-temporal photosynthetic performance information at field scale. The objective of this manuscript is to report the main advances in the development of UAS-based methods for SIF retrieval with non-imaging spectrometers through the latest scientific contributions, some of which are being developed within the frame of the Training on Remote Sensing for Ecosystem Modelling (TRuStEE) program. Investigations from the Universities of Edinburgh (School of Geosciences) and Tasmania (School of Technology, Environments and Design) are first presented, both sharing the principle of the spectroradiometer optical path bifurcation throughout, the so called ‘Piccolo-Doppio’ and ‘AirSIF’ systems, respectively. Furthermore, JB Hyperspectral Devices’ ongoing investigations towards the closest possible characterization of the atmospheric interference suffered by orbital platforms are outlined. The latest approach focuses on the observation of one single ground point across a multiple-kilometer atmosphere vertical column using the high altitude UAS named as AirFloX, mounted on a specifically designed and manufactured fixed wing platform: ‘FloXPlane’. We present technical details and preliminary results obtained from each instrument, a summary of their main characteristics, and finally the remaining challenges and open research questions are addressed. On the basis of the presented findings, the consensus is that SIF can be retrieved from low altitude spectroscopy. However, the UAS-based methods for SIF retrieval still present uncertainties associated with the current sensor characteristics and the spatio-temporal mismatching between aerial and ground measurements, which complicate robust validations. Complementary studies regarding the standardization of calibration methods and the characterization of spectroradiometers and data processing workflows are also required. Moreover, other open research questions such as those related to the implementation of atmospheric correction, bidirectional reflectance distribution function (BRDF) correction, and accurate surface elevation models remain to be addressed
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bendig, Juliane
|0 0000-0002-6454-5654
|b 1
700 1 _ |a Mac Arthur, Alasdair
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Burkart, Andreas
|0 P:(DE-Juel1)145906
|b 3
700 1 _ |a Julitta, Tommaso
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maseyk, Kadmiel
|0 0000-0003-3299-4380
|b 5
700 1 _ |a Thomas, Rick
|0 0000-0001-8307-2584
|b 6
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 7
|u fzj
700 1 _ |a Rossini, Micol
|0 0000-0002-6052-3140
|b 8
700 1 _ |a Celesti, Marco
|0 0000-0001-7249-7106
|b 9
700 1 _ |a Schüttemeyer, Dirk
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kraska, Thorsten
|0 0000-0001-9451-6769
|b 11
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 12
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 13
773 _ _ |a 10.3390/rs12101624
|g Vol. 12, no. 10, p. 1624 -
|0 PERI:(DE-600)2513863-7
|n 10
|p 1624 -
|t Remote sensing
|v 12
|y 2020
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/885477/files/Invoice_remotesensing-788248.pdf
856 4 _ |u https://juser.fz-juelich.de/record/885477/files/remotesensing-12-01624.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885477
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178996
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21