000885479 001__ 885479
000885479 005__ 20210104120152.0
000885479 0247_ $$2doi$$a10.1111/jne.12907
000885479 0247_ $$2ISSN$$a0953-8194
000885479 0247_ $$2ISSN$$a1365-2826
000885479 0247_ $$2Handle$$a2128/26629
000885479 0247_ $$2altmetric$$aaltmetric:91982365
000885479 0247_ $$2pmid$$a33025697
000885479 0247_ $$2WOS$$aWOS:000575320900001
000885479 037__ $$aFZJ-2020-03862
000885479 082__ $$a610
000885479 1001_ $$00000-0001-9951-923X$$aKullmann, Stephanie$$b0$$eCorresponding author
000885479 245__ $$aInvestigating obesity‐associated brain inflammation using quantitative water content mapping
000885479 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2020
000885479 3367_ $$2DRIVER$$aarticle
000885479 3367_ $$2DataCite$$aOutput Types/Journal article
000885479 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609263997_12842
000885479 3367_ $$2BibTeX$$aARTICLE
000885479 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885479 3367_ $$00$$2EndNote$$aJournal Article
000885479 520__ $$aThere is growing evidence that obesity is associated with inflammation in the brain, which could contribute to the pathogenesis of obesity. In humans, it is challenging to detect brain inflammation in vivo. Recently, quantitative magnetic resonance imaging (qMRI) has emerged as a tool for characterising pathophysiological processes in the brain with reliable and reproducible measures. Proton density imaging provides quantitative assessment of the brain water content, which is affected in different pathologies, including inflammation. We enrolled 115 normal weight, overweight and obese men and women (body mass index [BMI] range 20.1‐39.7 kg m‐2, age range 20‐75 years, 60% men) to acquire cerebral water content mapping in vivo using MRI at 3 Tesla. We investigated potential associations between brain water content with anthropometric measures of obesity, body fat distribution and whole‐body metabolism. No global changes in water content were associated with obesity. However, higher water content values in the cerebellum, limbic lobe and sub‐lobular region were detected in participants with higher BMI, independent of age. More specifically, the dorsal striatum, hypothalamus, thalamus, fornix, anterior limb of the internal capsule and posterior thalamic radiation showed the strongest relationship with BMI, independent of age. In a subgroup with available measurements (n = 50), we identified visceral adipose tissue to be the strongest tested link between higher water content values and obesity. Individuals with metabolic syndrome had the highest water content values in the hypothalamus and the fornix. There is accumulating evidence that inflammation of the hypothalamus contributed to obesity‐associated insulin resistance in that area. Whether brain inflammation is a cause or consequence of obesity in humans still needs to be investigated using a longitudinal study design. Using qMRI, we were able to detect marked water content changes in young and older obese adults, which is most likely the result of chronic low‐grade inflammation.
000885479 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000885479 588__ $$aDataset connected to CrossRef
000885479 7001_ $$0P:(DE-Juel1)140186$$aAbbas, Zaheer$$b1$$ufzj
000885479 7001_ $$0P:(DE-HGF)0$$aMachann, Jürgen$$b2
000885479 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b3$$ufzj
000885479 7001_ $$0P:(DE-HGF)0$$aScheffler, Klaus$$b4
000885479 7001_ $$0P:(DE-HGF)0$$aBirkenfeld, Andreas L.$$b5
000885479 7001_ $$0P:(DE-HGF)0$$aHäring, Hans‐Ulrich$$b6
000885479 7001_ $$0P:(DE-HGF)0$$aFritsche, Andreas$$b7
000885479 7001_ $$0P:(DE-HGF)0$$aHeni, Martin$$b8
000885479 7001_ $$00000-0002-8859-4661$$aPreissl, Hubert$$b9
000885479 773__ $$0PERI:(DE-600)2007386-0$$a10.1111/jne.12907$$n12$$pe12907$$tJournal of neuroendocrinology$$v32$$x1365-2826$$y2020
000885479 8564_ $$uhttps://juser.fz-juelich.de/record/885479/files/jne.12907.pdf$$yOpenAccess
000885479 909CO $$ooai:juser.fz-juelich.de:885479$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885479 9101_ $$0I:(DE-HGF)0$$60000-0001-9951-923X$$aExternal Institute$$b0$$kExtern
000885479 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140186$$aForschungszentrum Jülich$$b1$$kFZJ
000885479 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000885479 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000885479 9141_ $$y2020
000885479 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROENDOCRINOL : 2018$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000885479 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885479 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000885479 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000885479 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885479 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000885479 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000885479 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000885479 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000885479 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000885479 980__ $$ajournal
000885479 980__ $$aVDB
000885479 980__ $$aUNRESTRICTED
000885479 980__ $$aI:(DE-Juel1)INM-4-20090406
000885479 980__ $$aI:(DE-Juel1)INM-11-20170113
000885479 980__ $$aI:(DE-Juel1)VDB1046
000885479 9801_ $$aFullTexts