000885492 001__ 885492
000885492 005__ 20210130010419.0
000885492 0247_ $$2doi$$a10.1109/TED.2020.3001247
000885492 0247_ $$2ISSN$$a0018-9383
000885492 0247_ $$2ISSN$$a0096-2430
000885492 0247_ $$2ISSN$$a0197-6370
000885492 0247_ $$2ISSN$$a1557-9646
000885492 0247_ $$2ISSN$$a2379-8653
000885492 0247_ $$2ISSN$$a2379-8661
000885492 0247_ $$2Handle$$a2128/25846
000885492 0247_ $$2altmetric$$aaltmetric:84961965
000885492 0247_ $$2WOS$$aWOS:000552976100015
000885492 037__ $$aFZJ-2020-03873
000885492 082__ $$a620
000885492 1001_ $$00000-0002-2153-4808$$aHoffer, Barak$$b0$$eCorresponding author
000885492 245__ $$aExperimental Demonstration of Memristor-Aided Logic (MAGIC) Using Valence Change Memory (VCM)
000885492 260__ $$aNew York, NY$$bIEEE$$c2020
000885492 3367_ $$2DRIVER$$aarticle
000885492 3367_ $$2DataCite$$aOutput Types/Journal article
000885492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602076038_11856
000885492 3367_ $$2BibTeX$$aARTICLE
000885492 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885492 3367_ $$00$$2EndNote$$aJournal Article
000885492 520__ $$aMemristor-aided logic (MAGIC) is a technique for performing in-memory computing using memristive devices. The design of a MAGIC NOR gate has been described in detail, and it serves as the basic building block for several processing-in-memory architectures. However, the input stability of the MAGIC NOR gate forces a limitation on the threshold voltages: the magnitude of the set voltage must be higher than the magnitude of the reset voltage. Unfortunately, many of the current leading resistive switching technologies, particularly, valence change memory (VCM), have the opposite ratio between the threshold voltages. In this article, we experimentally demonstrate the undesirable effects of input instability. Furthermore, we introduce three new MAGIC gates for devices with low set-to-reset voltage ratios and experimentally demonstrate their robust operation using Pt/Ta 2 O 5 /W/Pt devices. The three gates, combined with constant values, are functionally complete and are demonstrated as building blocks for in-memory logic on VCM devices.
000885492 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000885492 588__ $$aDataset connected to CrossRef
000885492 7001_ $$0P:(DE-Juel1)145504$$aRana, Vikas$$b1
000885492 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b2
000885492 7001_ $$0P:(DE-Juel1)131022$$aWaser, Rainer$$b3
000885492 7001_ $$00000-0001-7277-7271$$aKvatinsky, Shahar$$b4
000885492 773__ $$0PERI:(DE-600)2028088-9$$a10.1109/TED.2020.3001247$$gVol. 67, no. 8, p. 3115 - 3122$$n8$$p3115 - 3122$$tIEEE transactions on electron devices$$v67$$x1557-9646$$y2020
000885492 8564_ $$uhttps://juser.fz-juelich.de/record/885492/files/Hoffer.pdf$$yOpenAccess
000885492 8564_ $$uhttps://juser.fz-juelich.de/record/885492/files/Hoffer.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885492 909CO $$ooai:juser.fz-juelich.de:885492$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145504$$aForschungszentrum Jülich$$b1$$kFZJ
000885492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b2$$kFZJ
000885492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
000885492 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000885492 9141_ $$y2020
000885492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-16
000885492 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885492 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ELECTRON DEV : 2018$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885492 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000885492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000885492 920__ $$lyes
000885492 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000885492 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000885492 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000885492 980__ $$ajournal
000885492 980__ $$aVDB
000885492 980__ $$aUNRESTRICTED
000885492 980__ $$aI:(DE-Juel1)PGI-7-20110106
000885492 980__ $$aI:(DE-Juel1)PGI-10-20170113
000885492 980__ $$aI:(DE-82)080009_20140620
000885492 9801_ $$aFullTexts