000885493 001__ 885493
000885493 005__ 20210130010420.0
000885493 0247_ $$2doi$$a10.1007/s10853-020-05028-0
000885493 0247_ $$2ISSN$$a0022-2461
000885493 0247_ $$2ISSN$$a1573-4803
000885493 0247_ $$2Handle$$a2128/26405
000885493 0247_ $$2WOS$$aWOS:000549673700005
000885493 037__ $$aFZJ-2020-03874
000885493 082__ $$a670
000885493 1001_ $$00000-0002-9886-0505$$aRupp, Jonathan A. J.$$b0$$eCorresponding author
000885493 245__ $$aControl of stoichiometry and morphology in polycrystalline V2O3 thin films using oxygen buffers
000885493 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2020
000885493 3367_ $$2DRIVER$$aarticle
000885493 3367_ $$2DataCite$$aOutput Types/Journal article
000885493 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607420442_11439
000885493 3367_ $$2BibTeX$$aARTICLE
000885493 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885493 3367_ $$00$$2EndNote$$aJournal Article
000885493 520__ $$aIn this work, we investigate the influence of low temperature reduction conditions (873 K) by different oxygen buffers on the off-stoichiometry of polycrystalline V2O3 thin films. Vanadium oxide thin films (thickness 300 nm and 100 nm) have been grown by reactive sputtering and have been annealed in a buffered atmosphere subsequently. Buffer couples were chosen throughout the stability range of V2−yO3 (y ≤ 0.03) by the use of different oxygen buffer combinations, namely Ni/NiO, Fe/Fe3O4, Cr/Cr2O3 and Mn/MnO. Thin films have been characterized by scanning electron microscopy, X-ray diffractometry and low temperature electrical transport measurements. Upon decreasing the oxygen partial pressure, the mean grain size of V2O3 decreases systematically from 45 ± 20 nm with a high porosity to 27 ± 10 nm without porosity. The most favourable reduction conditions have been identified for Fe- and Cr-based couples. Moreover, all thin films reduced by the four buffer couples exhibit high insulator-to-metal transition temperatures (110–155 K) close to the value of ideally stoichiometric V2−yO3 (y < 0.005) (155 K) as well as large changes in resistance at the transition (three to five orders of magnitude). This oxygen buffer method hence provides a valuable synthesis method of highly stoichiometric polycrystalline V2O3 thin films with technological relevance
000885493 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000885493 588__ $$aDataset connected to CrossRef
000885493 7001_ $$0P:(DE-HGF)0$$aCorraze, Benoît$$b1
000885493 7001_ $$0P:(DE-HGF)0$$aBesland, Marie-Paule$$b2
000885493 7001_ $$0P:(DE-HGF)0$$aCario, Laurent$$b3
000885493 7001_ $$0P:(DE-HGF)0$$aTranchant, Julien$$b4
000885493 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b5
000885493 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b6
000885493 7001_ $$0P:(DE-HGF)0$$aJanod, Etienne$$b7
000885493 773__ $$0PERI:(DE-600)2015305-3$$a10.1007/s10853-020-05028-0$$gVol. 55, no. 30, p. 14717 - 14727$$n30$$p14717 - 14727$$tJournal of materials science$$v55$$x1573-4803$$y2020
000885493 8564_ $$uhttps://juser.fz-juelich.de/record/885493/files/2020_Article_-1.pdf
000885493 8564_ $$uhttps://juser.fz-juelich.de/record/885493/files/2020%2006%20Rupp%20V2O3%20Buffer%20JMS%20Manuscript_Review2.pdf$$yPublished on 2020-07-17. Available in OpenAccess from 2021-07-17.
000885493 8564_ $$uhttps://juser.fz-juelich.de/record/885493/files/2020_Article_-1.pdf?subformat=pdfa$$xpdfa
000885493 909CO $$ooai:juser.fz-juelich.de:885493$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b6$$kFZJ
000885493 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000885493 9141_ $$y2020
000885493 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885493 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI : 2018$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-16$$wger
000885493 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000885493 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-16$$wger
000885493 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000885493 920__ $$lyes
000885493 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000885493 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000885493 980__ $$ajournal
000885493 980__ $$aVDB
000885493 980__ $$aUNRESTRICTED
000885493 980__ $$aI:(DE-Juel1)PGI-7-20110106
000885493 980__ $$aI:(DE-82)080009_20140620
000885493 9801_ $$aFullTexts