000885494 001__ 885494
000885494 005__ 20210130010420.0
000885494 0247_ $$2doi$$a10.1016/j.tsf.2020.138063
000885494 0247_ $$2ISSN$$a0040-6090
000885494 0247_ $$2ISSN$$a1879-2731
000885494 0247_ $$2Handle$$a2128/26207
000885494 0247_ $$2WOS$$aWOS:000533601500004
000885494 037__ $$aFZJ-2020-03875
000885494 082__ $$a660
000885494 1001_ $$00000-0002-9886-0505$$aRupp, J. A. J.$$b0$$eCorresponding author
000885494 245__ $$aCompetition between V2O3 phases deposited by one-step reactive sputtering process on polycrystalline conducting electrode
000885494 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000885494 3367_ $$2DRIVER$$aarticle
000885494 3367_ $$2DataCite$$aOutput Types/Journal article
000885494 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605628028_27112
000885494 3367_ $$2BibTeX$$aARTICLE
000885494 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885494 3367_ $$00$$2EndNote$$aJournal Article
000885494 520__ $$aThis comprehensive work investigates a technologically appealing synthesis of V2O3 oxide thin films for electronic applications by the use of direct reactive sputtering with a heavily diluted gas mixture on a conducting platinum electrode. Morphological characterization was performed by Scanning Electron Microscopy, Atomic Force Microscopy, X-Ray Diffraction and X-Ray Reflectometry. Vanadium valence states were investigated by X-Ray Photoelectron Spectroscopy and crystalline phases were checked by X-Ray Grazing Incidence measurements. Low temperature electrical transport characteristics were determined by 2-point probe measurements. Only amorphous V2O3 was found to exist in a mixed-valence phase in the investigated parameter range. Deposition temperatures between 400 °C and 550 °C enable formation of mixtures between crystallographic phases of corundum- and bixbyite-type V2O3 polymorphs. Depending on temperature and sputtering power, morphology and stoichiometry can be tuned to generate four distinct type of electrical transport characteristics. Most promising electrical properties of corundum V2O3 with a resistance ratio of up to four orders of magnitude (during the low temperature insulator-to-metal transition) have been obtained for a moderate sputtering power of 50 W (on a 1″ target) at a deposition temperature of 600 °C. Reactive sputtering thus enables direct control of structural and electrical parameters for polycrystalline V2O3 thin film phases on a conducting substrate.
000885494 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000885494 588__ $$aDataset connected to CrossRef
000885494 7001_ $$0P:(DE-HGF)0$$aJanod, E.$$b1
000885494 7001_ $$0P:(DE-HGF)0$$aBesland, M.-P.$$b2
000885494 7001_ $$0P:(DE-HGF)0$$aCorraze, B.$$b3
000885494 7001_ $$0P:(DE-HGF)0$$aKindsmüller, A.$$b4
000885494 7001_ $$0P:(DE-HGF)0$$aQuerré, M.$$b5
000885494 7001_ $$0P:(DE-HGF)0$$aTranchant, J.$$b6
000885494 7001_ $$0P:(DE-HGF)0$$aCario, L.$$b7
000885494 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b8
000885494 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b9
000885494 7001_ $$0P:(DE-HGF)0$$aWouters, D. J.$$b10
000885494 773__ $$0PERI:(DE-600)1482896-0$$a10.1016/j.tsf.2020.138063$$gVol. 705, p. 138063 -$$p138063 -$$tThin solid films$$v705$$x0040-6090$$y2020
000885494 8564_ $$uhttps://juser.fz-juelich.de/record/885494/files/1-s2.0-S0040609020302753-main%20%281%29.pdf
000885494 8564_ $$uhttps://juser.fz-juelich.de/record/885494/files/2020%2003%20Rupp%20V2O3%20Buffer%20JMS%20Manuscript.pdf$$yPublished on 2020-04-21. Available in OpenAccess from 2022-04-21.
000885494 909CO $$ooai:juser.fz-juelich.de:885494$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b8$$kFZJ
000885494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b9$$kFZJ
000885494 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000885494 9141_ $$y2020
000885494 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000885494 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885494 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885494 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTHIN SOLID FILMS : 2018$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000885494 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-03$$wger
000885494 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000885494 920__ $$lyes
000885494 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000885494 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000885494 980__ $$ajournal
000885494 980__ $$aVDB
000885494 980__ $$aUNRESTRICTED
000885494 980__ $$aI:(DE-Juel1)PGI-7-20110106
000885494 980__ $$aI:(DE-82)080009_20140620
000885494 9801_ $$aFullTexts