001     885494
005     20210130010420.0
024 7 _ |a 10.1016/j.tsf.2020.138063
|2 doi
024 7 _ |a 0040-6090
|2 ISSN
024 7 _ |a 1879-2731
|2 ISSN
024 7 _ |a 2128/26207
|2 Handle
024 7 _ |a WOS:000533601500004
|2 WOS
037 _ _ |a FZJ-2020-03875
082 _ _ |a 660
100 1 _ |a Rupp, J. A. J.
|0 0000-0002-9886-0505
|b 0
|e Corresponding author
245 _ _ |a Competition between V2O3 phases deposited by one-step reactive sputtering process on polycrystalline conducting electrode
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605628028_27112
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This comprehensive work investigates a technologically appealing synthesis of V2O3 oxide thin films for electronic applications by the use of direct reactive sputtering with a heavily diluted gas mixture on a conducting platinum electrode. Morphological characterization was performed by Scanning Electron Microscopy, Atomic Force Microscopy, X-Ray Diffraction and X-Ray Reflectometry. Vanadium valence states were investigated by X-Ray Photoelectron Spectroscopy and crystalline phases were checked by X-Ray Grazing Incidence measurements. Low temperature electrical transport characteristics were determined by 2-point probe measurements. Only amorphous V2O3 was found to exist in a mixed-valence phase in the investigated parameter range. Deposition temperatures between 400 °C and 550 °C enable formation of mixtures between crystallographic phases of corundum- and bixbyite-type V2O3 polymorphs. Depending on temperature and sputtering power, morphology and stoichiometry can be tuned to generate four distinct type of electrical transport characteristics. Most promising electrical properties of corundum V2O3 with a resistance ratio of up to four orders of magnitude (during the low temperature insulator-to-metal transition) have been obtained for a moderate sputtering power of 50 W (on a 1″ target) at a deposition temperature of 600 °C. Reactive sputtering thus enables direct control of structural and electrical parameters for polycrystalline V2O3 thin film phases on a conducting substrate.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Janod, E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Besland, M.-P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Corraze, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kindsmüller, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Querré, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tranchant, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cario, L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dittmann, R.
|0 P:(DE-Juel1)130620
|b 8
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 9
700 1 _ |a Wouters, D. J.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.tsf.2020.138063
|g Vol. 705, p. 138063 -
|0 PERI:(DE-600)1482896-0
|p 138063 -
|t Thin solid films
|v 705
|y 2020
|x 0040-6090
856 4 _ |u https://juser.fz-juelich.de/record/885494/files/1-s2.0-S0040609020302753-main%20%281%29.pdf
856 4 _ |y Published on 2020-04-21. Available in OpenAccess from 2022-04-21.
|u https://juser.fz-juelich.de/record/885494/files/2020%2003%20Rupp%20V2O3%20Buffer%20JMS%20Manuscript.pdf
909 C O |o oai:juser.fz-juelich.de:885494
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b THIN SOLID FILMS : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21