000885496 001__ 885496
000885496 005__ 20210130010421.0
000885496 0247_ $$2doi$$a10.1016/j.jcat.2020.02.023
000885496 0247_ $$2ISSN$$a0021-9517
000885496 0247_ $$2ISSN$$a1090-2694
000885496 0247_ $$2Handle$$a2128/26183
000885496 0247_ $$2altmetric$$aaltmetric:77514938
000885496 0247_ $$2WOS$$aWOS:000525490600018
000885496 037__ $$aFZJ-2020-03877
000885496 082__ $$a540
000885496 1001_ $$0P:(DE-Juel1)171201$$aKerkmann, Abhilasha$$b0$$eCorresponding author$$ufzj
000885496 245__ $$aCopper facilitated nickel oxy-hydroxide films as efficient synergistic oxygen evolution electrocatalyst
000885496 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000885496 3367_ $$2DRIVER$$aarticle
000885496 3367_ $$2DataCite$$aOutput Types/Journal article
000885496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605605254_28690
000885496 3367_ $$2BibTeX$$aARTICLE
000885496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885496 3367_ $$00$$2EndNote$$aJournal Article
000885496 520__ $$aEfficient catalysts made of cheap and abundant metal ions are in need to overcome the sluggish kinetics of the anodic water oxidation reaction. The development of an inexpensive catalyst with improved performance is key to produce hydrogen by the electrolytic water splitting reaction. The user friendly chemical solution deposition method was applied to prepare films with predecided mole concentrations of copper and nickel. The mixed metal oxide with equal mole ratio of Cu:Ni (1:1) achieved the maximum activity with the onset of water oxidation at overpotential of 0.40 V (1.63 V vs RHE) and achieved the current density of 1 mA/cm2 at an overpotential of 0.420 V at pH 13. The activity of this combination is attributed to the copper facilitated in-situ formation of a layered nickel oxy-hydroxide structure. The presence of both metal ions was found to be necessary indicating a synergy between Cu and Ni for the oxygen evolution reaction. The present work representing the simple synthesis process of the catalyst with the improved water oxidation activity is a promising step to develop electrodes for water electrolysis.
000885496 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000885496 588__ $$aDataset connected to CrossRef
000885496 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b1
000885496 7001_ $$0P:(DE-Juel1)131014$$aValov, I.$$b2
000885496 7001_ $$0P:(DE-HGF)0$$aSingh, I. B.$$b3
000885496 7001_ $$0P:(DE-HGF)0$$aSrivastava, A. K.$$b4
000885496 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000885496 773__ $$0PERI:(DE-600)1468993-5$$a10.1016/j.jcat.2020.02.023$$gVol. 384, p. 189 - 198$$p189 - 198$$tJournal of catalysis$$v384$$x0021-9517$$y2020
000885496 8564_ $$uhttps://juser.fz-juelich.de/record/885496/files/Revised%20Manucript_catalysis%20final%20Submitted.pdf$$yPublished on 2020-03-13. Available in OpenAccess from 2021-03-13.
000885496 909CO $$ooai:juser.fz-juelich.de:885496$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171201$$aForschungszentrum Jülich$$b0$$kFZJ
000885496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b2$$kFZJ
000885496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000885496 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000885496 9141_ $$y2020
000885496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-21
000885496 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885496 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CATAL : 2018$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CATAL : 2018$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-21
000885496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21
000885496 920__ $$lyes
000885496 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000885496 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000885496 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000885496 980__ $$ajournal
000885496 980__ $$aVDB
000885496 980__ $$aUNRESTRICTED
000885496 980__ $$aI:(DE-Juel1)PGI-7-20110106
000885496 980__ $$aI:(DE-82)080009_20140620
000885496 980__ $$aI:(DE-Juel1)IBI-7-20200312
000885496 9801_ $$aFullTexts