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I. INTRODUCTION

For more than five decades, the flexibility of the von Neu-
mann architecture—in which data from discrete memory units arrive
at dedicated compute units as both operations and operands—has
driven exponential improvements in system performance. These
computing systems require large amounts of data to be shuttled
back and forth at high speeds during the execution of computa-
tional tasks. However, as device scaling has slowed due to power and
voltage considerations, the time and energy spent transporting data
across the so-called “von Neumann bottleneck” between memory
and compute units have become problematic. These performance
bottlenecks and significant area/power inefficiencies are particularly
inescapable for data-centric applications, such as real-time image
recognition and natural language processing, where the state-of-the-
art von Neumann systems work hard to match the performance of
an average human.

We are on the cusp of a revolution in artificial intelligence
(AI) and cognitive computing, with algorithmic advances that
have allowed Deep Neural Networks (DNNs) to approach or even
surpass the performance of humans on many tasks such as
pattern-recognition, game-playing, machine translation, and more.

However, the computers that run today’s AI algorithms are
based on the von Neumann architecture, which means that these
machines are many orders of magnitude less energy-efficient
than the human brain even as they pass the brain in speed or
approach it in accuracy. Thus, it is becoming increasingly clear
that, to build efficient cognitive computers, we need to transition
to novel architectures where memory and processing are better
collocated."”

The human brain suggests an intriguing non-von Neumann
computing paradigm for future computing systems, referred to
as either brain-inspired or neuromorphic computing. The brain
is characterized by its massively parallel architecture connecting
myriad low-power computing elements (neurons) and adaptive
memory elements (synapses). It is natural to look to the human
brain for inspiration since it is a remarkable engine of cognition
that performs computations on the order of peta-ops per joule.
Since the brain can outperform modern processors on many tasks
involving unstructured data classification and pattern recognition,
it provides an “existence proof” for an ultralow power cognitive
computer.

Unfortunately, we are still quite far from attaining a com-
prehensive understanding of how the brain computes. However,
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we have uncovered certain salient features of this computing
system such as the collocation of memory and processing, a com-
puting fabric comprising large-scale networks of neurons and
plastic synapses, and spike-based communication and processing
of information. Early studies of the brain led to the creation
of artificial neural networks. These evolved over many decades
into the DNNs responsible for the current Al revolution behind
recent breakthroughs in image classification, speech recognition,
machine translation, customer prediction, fraud detection, game-
playing, and many other commercially relevant applications. Based
on these insights, researchers have begun to envision neuro-
morphic computing systems at multiple levels of inspiration or
abstraction.

In the brain, memory and processing are highly entwined.
Hence, the memory unit can be expected to play a key role
in brain-inspired computing systems. The scaling of dense non-
volatile memory (NVM) crossbar arrays to few-nanometer critical
dimensions has been recognized as one path to build comput-
ing systems that can mimic the massive parallelism and low-
power operation found in the human brain. The human brain
has a high degree of connectivity, with any given neuron hav-
ing as many as 10000 inputs from other neurons. Dense arrays
of NVM elements provide an opportunity to emulate this connec-
tivity in hardware if various engineering difficulties can be over-
come. In particular, very high-density, low-power, variable-state,
programmable, and nonvolatile memory devices could play a central
role.

Il. SPECIAL ISSUE

In this context of neuromorphic computing as a promising area
of research for future, energy-efficient computing systems, we orga-
nized the present Special Issue in APL Materials entitled “Emerging
Materials in Neuromorphic Computing.”

This special issue provides a comprehensive overview on
emerging materials at the active frontier of neuromorphic com-
puting. We considered new materials and new uses for estab-
lished materials, within the context of brain-inspired computing
algorithms, ranging from spiking networks to oscillator net-
works to reservoir computing to deep neural networks. We
sought out the interdisciplinary perspective which could inte-
grate materials science, physics, chemistry, computer science,
and engineering. The selected articles give a state-of-the-art
overview of the progress over the past few years in this topic
area.

Many of these articles address resistive switching materials for
neuromorphic computing, including devices based on

phase-change memory, ™

memristive oxide-filament resistive devices,”
electrochemical metal-filament devices, "'
ferroelectric'” and organic ferroelectric devices,'”
nonfilamentary RRAM materials,’ '® and
topological insulator materials.'”

Several papers studied the interplay between memristor
device characteristics and neuromorphic applications.”'*'” Other
papers focused on photonic applications relevant to neuromorphic
computing.””*"*' Finally, several papers addressed the stochastic

EDITORIAL scitation.org/journal/apm

operation of devices for the novel synaptic and/or neuronal behav-
ior”'"!" to enable stochastic learning algorithms.
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