000885498 001__ 885498
000885498 005__ 20240711085608.0
000885498 0247_ $$2doi$$a10.1038/s41560-020-00693-6
000885498 0247_ $$2Handle$$a2128/26495
000885498 0247_ $$2altmetric$$aaltmetric:90888428
000885498 0247_ $$2WOS$$aWOS:000571739400005
000885498 037__ $$aFZJ-2020-03879
000885498 082__ $$a330
000885498 1001_ $$0P:(DE-HGF)0$$aKim, Un-Hyuck$$b0
000885498 245__ $$aHeuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge
000885498 260__ $$aLondon$$bNature Publishing Group$$c2020
000885498 3367_ $$2DRIVER$$aarticle
000885498 3367_ $$2DataCite$$aOutput Types/Journal article
000885498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607693876_19866
000885498 3367_ $$2BibTeX$$aARTICLE
000885498 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885498 3367_ $$00$$2EndNote$$aJournal Article
000885498 520__ $$aThe demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure.
000885498 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000885498 588__ $$aDataset connected to CrossRef
000885498 7001_ $$0P:(DE-HGF)0$$aPark, Geon-Tae$$b1
000885498 7001_ $$0P:(DE-HGF)0$$aSon, Byoung-Ki$$b2
000885498 7001_ $$0P:(DE-HGF)0$$aNam, Gyeong Won$$b3
000885498 7001_ $$00000-0001-8663-7771$$aLiu, Jun$$b4
000885498 7001_ $$0P:(DE-Juel1)178838$$aKuo, Liang-Yin$$b5
000885498 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b6
000885498 7001_ $$00000-0001-6164-3331$$aYoon, Chong S.$$b7$$eCorresponding author
000885498 7001_ $$00000-0002-0117-0170$$aSun, Yang-Kook$$b8$$eCorresponding author
000885498 773__ $$0PERI:(DE-600)2847369-3$$a10.1038/s41560-020-00693-6$$p860$$tNature energy$$v5$$x2058-7546$$y2020
000885498 8564_ $$uhttps://juser.fz-juelich.de/record/885498/files/s41560-020-00693-6.pdf$$yRestricted
000885498 8564_ $$uhttps://juser.fz-juelich.de/record/885498/files/Nature-Energy.pdf$$yPublished on 2020-12-09. Available in OpenAccess from 2021-06-09.
000885498 8564_ $$uhttps://juser.fz-juelich.de/record/885498/files/Nature-Energy.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-12-09. Available in OpenAccess from 2021-06-09.
000885498 909CO $$ooai:juser.fz-juelich.de:885498$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885498 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000885498 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000885498 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000885498 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000885498 9101_ $$0I:(DE-HGF)0$$60000-0001-8663-7771$$aExternal Institute$$b4$$kExtern
000885498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178838$$aForschungszentrum Jülich$$b5$$kFZJ
000885498 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178838$$a IEK-1$$b5
000885498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b6$$kFZJ
000885498 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)174502$$a IEK-1$$b6
000885498 9101_ $$0I:(DE-HGF)0$$60000-0001-6164-3331$$aExternal Institute$$b7$$kExtern
000885498 9101_ $$0I:(DE-HGF)0$$60000-0002-0117-0170$$aExternal Institute$$b8$$kExtern
000885498 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000885498 9141_ $$y2020
000885498 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885498 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ENERGY : 2018$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)9950$$2StatID$$aIF >= 50$$bNAT ENERGY : 2018$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000885498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000885498 920__ $$lyes
000885498 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000885498 9801_ $$aFullTexts
000885498 980__ $$ajournal
000885498 980__ $$aVDB
000885498 980__ $$aUNRESTRICTED
000885498 980__ $$aI:(DE-Juel1)IEK-1-20101013
000885498 981__ $$aI:(DE-Juel1)IMD-2-20101013