001     885498
005     20240711085608.0
024 7 _ |a 10.1038/s41560-020-00693-6
|2 doi
024 7 _ |a 2128/26495
|2 Handle
024 7 _ |a altmetric:90888428
|2 altmetric
024 7 _ |a WOS:000571739400005
|2 WOS
037 _ _ |a FZJ-2020-03879
082 _ _ |a 330
100 1 _ |a Kim, Un-Hyuck
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge
260 _ _ |a London
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607693876_19866
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Park, Geon-Tae
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Son, Byoung-Ki
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nam, Gyeong Won
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Jun
|0 0000-0001-8663-7771
|b 4
700 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)178838
|b 5
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 6
700 1 _ |a Yoon, Chong S.
|0 0000-0001-6164-3331
|b 7
|e Corresponding author
700 1 _ |a Sun, Yang-Kook
|0 0000-0002-0117-0170
|b 8
|e Corresponding author
773 _ _ |a 10.1038/s41560-020-00693-6
|0 PERI:(DE-600)2847369-3
|p 860
|t Nature energy
|v 5
|y 2020
|x 2058-7546
856 4 _ |u https://juser.fz-juelich.de/record/885498/files/s41560-020-00693-6.pdf
|y Restricted
856 4 _ |y Published on 2020-12-09. Available in OpenAccess from 2021-06-09.
|u https://juser.fz-juelich.de/record/885498/files/Nature-Energy.pdf
856 4 _ |y Published on 2020-12-09. Available in OpenAccess from 2021-06-09.
|x pdfa
|u https://juser.fz-juelich.de/record/885498/files/Nature-Energy.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885498
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0001-8663-7771
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178838
910 1 _ |a IEK-1
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)178838
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)174502
910 1 _ |a IEK-1
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)174502
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0001-6164-3331
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 0000-0002-0117-0170
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-17
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT ENERGY : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a IF >= 50
|0 StatID:(DE-HGF)9950
|2 StatID
|b NAT ENERGY : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21