Home > Publications database > Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge > print |
001 | 885498 | ||
005 | 20240711085608.0 | ||
024 | 7 | _ | |a 10.1038/s41560-020-00693-6 |2 doi |
024 | 7 | _ | |a 2128/26495 |2 Handle |
024 | 7 | _ | |a altmetric:90888428 |2 altmetric |
024 | 7 | _ | |a WOS:000571739400005 |2 WOS |
037 | _ | _ | |a FZJ-2020-03879 |
082 | _ | _ | |a 330 |
100 | 1 | _ | |a Kim, Un-Hyuck |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge |
260 | _ | _ | |a London |c 2020 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607693876_19866 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Park, Geon-Tae |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Son, Byoung-Ki |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Nam, Gyeong Won |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Liu, Jun |0 0000-0001-8663-7771 |b 4 |
700 | 1 | _ | |a Kuo, Liang-Yin |0 P:(DE-Juel1)178838 |b 5 |
700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 6 |
700 | 1 | _ | |a Yoon, Chong S. |0 0000-0001-6164-3331 |b 7 |e Corresponding author |
700 | 1 | _ | |a Sun, Yang-Kook |0 0000-0002-0117-0170 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41560-020-00693-6 |0 PERI:(DE-600)2847369-3 |p 860 |t Nature energy |v 5 |y 2020 |x 2058-7546 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/885498/files/s41560-020-00693-6.pdf |y Restricted |
856 | 4 | _ | |y Published on 2020-12-09. Available in OpenAccess from 2021-06-09. |u https://juser.fz-juelich.de/record/885498/files/Nature-Energy.pdf |
856 | 4 | _ | |y Published on 2020-12-09. Available in OpenAccess from 2021-06-09. |x pdfa |u https://juser.fz-juelich.de/record/885498/files/Nature-Energy.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:885498 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 0000-0001-8663-7771 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178838 |
910 | 1 | _ | |a IEK-1 |0 I:(DE-HGF)0 |b 5 |6 P:(DE-Juel1)178838 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)174502 |
910 | 1 | _ | |a IEK-1 |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)174502 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 0000-0001-6164-3331 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 0000-0002-0117-0170 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-17 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT ENERGY : 2018 |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-17 |
915 | _ | _ | |a IF >= 50 |0 StatID:(DE-HGF)9950 |2 StatID |b NAT ENERGY : 2018 |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-17 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|