000885503 001__ 885503
000885503 005__ 20250129092401.0
000885503 0247_ $$2doi$$a10.1140/epjst/e2020-900270-4
000885503 0247_ $$2ISSN$$a1951-6355
000885503 0247_ $$2ISSN$$a1951-6401
000885503 0247_ $$2Handle$$a2128/26213
000885503 0247_ $$2altmetric$$aaltmetric:82361492
000885503 0247_ $$2WOS$$aWOS:000575419700005
000885503 037__ $$aFZJ-2020-03883
000885503 082__ $$a530
000885503 1001_ $$0P:(DE-Juel1)176589$$aEbrahimzadeh, P.$$b0$$eCorresponding author
000885503 245__ $$aMinimal chimera states in phase-lag coupled mechanical oscillators
000885503 260__ $$aHeidelberg$$bSpringer$$c2020
000885503 3367_ $$2DRIVER$$aarticle
000885503 3367_ $$2DataCite$$aOutput Types/Journal article
000885503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605710696_23295
000885503 3367_ $$2BibTeX$$aARTICLE
000885503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885503 3367_ $$00$$2EndNote$$aJournal Article
000885503 520__ $$aWe obtain experimental chimera states in the minimal network of three identical mechanical oscillators (metronomes), by introducing phase-lagged all-to-all coupling. For this, we have developed a real-time model-in-the-loop coupling mechanism that allows for flexible and online change of coupling topology, strength and phase-lag. The chimera states manifest themselves as a mismatch of average frequency between two synchronous and one desynchronized oscillator. We find this kind of striking “chimeric” behavior is robust in a wide parameter region. At other parameters, however, chimera state can lose stability and the system behavior manifests itself as a heteroclinic switching between three saddle-type chimeras. Our experimental observations are in a qualitative agreement with the model simulation.
000885503 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000885503 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x1
000885503 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000885503 588__ $$aDataset connected to CrossRef
000885503 7001_ $$0P:(DE-Juel1)133935$$aSchiek, Michael$$b1
000885503 7001_ $$0P:(DE-HGF)0$$aJaros, P.$$b2
000885503 7001_ $$0P:(DE-HGF)0$$aKapitaniak, T.$$b3
000885503 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, S.$$b4
000885503 7001_ $$0P:(DE-HGF)0$$aMaistrenko, Y.$$b5
000885503 773__ $$0PERI:(DE-600)2267176-6$$a10.1140/epjst/e2020-900270-4$$gVol. 229, no. 12-13, p. 2205 - 2214$$n12-13$$p2205 - 2214$$tEuropean physical journal special topics$$v229$$x1951-6401$$y2020
000885503 8564_ $$uhttps://juser.fz-juelich.de/record/885503/files/Ebrahimzadeh2020_Article_MinimalChimeraStatesInPhase-la-1.pdf$$yOpenAccess
000885503 8564_ $$uhttps://juser.fz-juelich.de/record/885503/files/Ebrahimzadeh2020_Article_MinimalChimeraStatesInPhase-la-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885503 8767_ $$d2020-10-22$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$zFZJ-2020-02473, approved manually via mail
000885503 909CO $$ooai:juser.fz-juelich.de:885503$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000885503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176589$$aForschungszentrum Jülich$$b0$$kFZJ
000885503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133935$$aForschungszentrum Jülich$$b1$$kFZJ
000885503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b4$$kFZJ
000885503 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000885503 9141_ $$y2020
000885503 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000885503 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885503 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J-SPEC TOP : 2018$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-02-27$$wger
000885503 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885503 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000885503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000885503 920__ $$lyes
000885503 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000885503 9801_ $$aAPC
000885503 9801_ $$aFullTexts
000885503 980__ $$ajournal
000885503 980__ $$aVDB
000885503 980__ $$aUNRESTRICTED
000885503 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000885503 980__ $$aAPC
000885503 981__ $$aI:(DE-Juel1)PGI-4-20110106