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Abstract. We obtain experimental chimera states in the minimal
network of three identical mechanical oscillators (metronomes), by
introducing phase-lagged all-to-all coupling. For this, we have devel-
oped a real-time model-in-the-loop coupling mechanism that allows for
flexible and online change of coupling topology, strength and phase-
lag. The chimera states manifest themselves as a mismatch of average
frequency between two synchronous and one desynchronized oscilla-
tor. We find this kind of striking “chimeric” behavior is robust in a
wide parameter region. At other parameters, however, chimera state
can lose stability and the system behavior manifests itself as a hetero-
clinic switching between three saddle-type chimeras. Our experimental
observations are in a qualitative agreement with the model simulation.

1 Introduction

Chimera states, discovered at the edge of millennium by Kuramoto and Battogtohk
[1,2], are spatiotemporal patterns emerging in high-dimensional oscillatory networks
as a coexistence of coherent and incoherent groups of oscillators [3–15]. Ever since,
these remarkable counterintuitive patterns have been a subject to intensive theoretical
investigations. Beginning from 2012, chimera states have been observed experimen-
tally in optics and opto-electronics [16–18], chemical and electrochemical [19–21], and
mechanical oscillator systems [22–24]. They have been discussed to play role in the
complex dynamics, e.g. neural networks [25,26], power grids [28,29] and social sys-
tems [30]. One can find a detailed review on the role of chimera states in neuronal
networks in [27]. To this end, chimera states attract a growing attention, as illustrated
in recent review papers by Panaggio and Abrams [31], Schöll [32] and, Omelchenko
[33].
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Fig. 1. Experimental setup configuration. The three metronomes are equipped with an
array of magnetic sensors (Hall sensors, A) for contactless measuring of the rod’s position
and two coils (B) for applying magnetic force onto the counter weight. To increase magnetic
signal and force Neodymium magnets are attached to rod and counterweight (C). Hall sensor
signals (dashed line) are digitized in the ADC unit. In real-time processing unit (D), the
angles of all metronomes are reconstructed based on the ADC data and the coupling terms
are calculated according to equation (1). In DAC unit the coupling terms are converted
to electrical currents (solid brown lines) passing through the coils and generating magnetic
forces (see appendix).

Recently, it was reported theoretically that chimera states can also exist in
small networks of coupled oscillators. These so-called weak chimera states, defined
by Ashwin and Burylko in 2015 [34], refer to trajectories in which at least one
oscillator drifts in phase with respect to a frequency-synchronized group. This behav-
ior is then manifested in the difference between respective average frequencies (i.e.
Poincare winding numbers). In the context of minimal networks, the definitions of
weak chimera states and solitary states [35] are equivalent. The other notable behav-
ior in small networks is the heteroclinic switching between chimeras [36–38]. This
type behavior arises after the existing chimeras lose stability transforming into sad-
dles. In the N = 3 case, due to the S3 symmetry, the switching is then performed
between three saddle-type chimeras.

In spite of intensive theoretical investigations, experimental realization of chimera
states in minimal networks is still challenging. In this article, we report the experi-
mental observation of the chimera dynamics in a mechanical system of three coupled
metronomes with variable phase-lag and coupling strength. For the purpose, we have
built a setup in which the coupling between the metronomes is organized in real-time
via a computer, as illustrated in Figure 1. Due to the flexibility of such approach, we
may electronically assign any desired coupling scheme with the coupling magnitude
µi,j and phase-lag αi,j , then vary the parameters in a wide range. Our setup with
three all-to-all coupled metronomes allows observing stable anti-phase chimera states,
i.e. those in which two oscillators are synchronized in anti-phase and the third one
is frequency deviating, as well as heteroclinic switching between the chimeras, both
capturing wide regions of the parameter space.
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2 Experimental setup and the model

The setup is shown schematically in Figure 1. It contains three standard mechanical
metronomes, each of which is a pendulum of length l, mass m and moment of inertia
B. The position of each metronome’s rod is registered by an arrangement of 7 Hall
sensors. For creation of a strong magnetic signal, a small Neodymium magnet is
mounted on the rod. Based on the signals of the Hall sensors, the rod angle θi is
then calculated by interpolation of a look-up table which is created in advance per
calibration procedure. The coupling force is generated by an electrical current passing
through the coils attached on both sides of the counter weight, the current being
proportional to the respective coupling term. This method of implementation allows
for flexible definition and online variation of coupling strength µ and phase-lag α.
Moreover, this real-time computation-implementation coupling mechanism ensures a
fixed response time well below 1ms.

The motion of each pendulum is damped by the linear damper characterized by
the coefficient ε. To oppose this damping, the internal escapement mechanism of the
metronome generates an excitation torque MD in the threshold region (−γN , γN ): in
the first stage when 0 < θi < γN the escapment mechanism activates and MD = MN ,
and when θi < 0 it is deactivated MD = 0. Similarly, in the second stage for −γN <
θi < 0 activation works as MD = −MN , and for θi > 0 MD = 0.

An important characteristic of each metronome is the multistability of its dynam-
ics. Beyond the standard oscillatory regime given by a limit cycle, there are two silent
states corresponding to stable fixed points A+, A− (± sin−1MN/mgl, 0). Depend-

ing on the initial angle θi,0 and the initial velocity θ̇i,0, each of the three regimes
can be realized. If |θi,0| > γN the dynamics is always oscillatory, otherwise it

drops to the silence as soon as phase point (θi,0, θ̇i,0) lies inside the ellipsoid

θi,0/γN
2 + θ̇i,0/ωγN

2 = 1, reference [24]. The dynamics of the three-metronome sys-
tem in Figure 1 is modeled using the equations of motion derived from the principles
of classical mechanics. The angle dynamics is then described by the Kuramoto model
with inertia

Bθ̈i + εθ̇i +mgl sin θi = MD +H(θi − θ∗)
µ

3

3∑
i=1

sin(θj − θi − α), (1)

in which the sinusoidal coupling term is controlled by the Heaviside-like step function
H(θ − θ∗) according to the position of the coils θ∗ ≈ 30◦. The experiments and
numerical simulation consisted of varying the coupling strength µ and phase-lag α.

3 Results

Our main result consists in the experimental observation of chimera states for the
network of three all-to-all coupled metronomes. In the “chimeric” behavior, two of
the metronomes are frequency synchronized in anti-phase (normally with a breath-
ing) but the third one exhibits a different average frequency, satisfying thereby the
definition of weak chimera state [34]. Typical example of the experimental chimera
state is presented in Figure 2 (left). The state is obtained for practically identical
metronomes (natural frequencies are calibrated for less than 1% deviations), and for
fully symmetric coupling strength controlled by a computer. We find that this kind
chimeras arise at large enough values of the phase-lag parameter α, beginning from
α ≈ 0.7, and they preserve with further increase of α, even beyond π/2. Robustness
of the experimental chimeras is additionally supported by the fact that they originate
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Fig. 2. Chimera state in coupled metronome system at parameters α = 1.5 and µ = 9 ×
10−4, for experiment (left) and simulation (right). (a),(b) Angle time series of metronomes
showing the phase-locked metronomes no. 2 and 3, while no.1 changes its state, i.e. drifts in
phase. (c),(d) Color map representation of (a) and (b), respectively. (e),(f) Frequency profiles
showing the difference between phase-locked and drifting metronomes indicating system to
be in weak chimera state, see reference [25]. The eigen frequency of metronomes reside in the
grey region of (g) where their difference is calibrated less than 1%. (g),(h) Phase portraits of
approximately two periods of time interval of (a) and (b). The video of the phases portraits of
the whole time interval can be found at https://fz-juelich.sciebo.de/s/w45BvSge3cAIYH6.

from arbitrary assigned initial conditions (as long as all three metronomes are in the
oscillatory regime). Numerical simulations of equation (1) demonstrate qualitative
agreement with the experiment, see Figure 2 (right).

Full parameter region for the chimera state illustrated in Figure 2 is plotted
schematically in Figure 3; simulation details can be found in appendix. The example
illustrated in Figure 2 corresponds to parameter point A. We observed that chimera
preserves its properties in the whole region shown in grey. Moving left from the
sample parameter point A by decreasing phase-lag α, chimera state loses its stability

https://fz-juelich.sciebo.de/s/w45BvSge3cAIYH6
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Fig. 3. Parameter region of dependence of different spatiotemporal patterns on parameters
α and µ. The white data points in the Switchings region indicate coexistence of the syn-
chronous state (for α < π/2) and rotating waves (for α > π/2) with heteroclinic switchings.
The border between Chimera states and Switchings are not clear cut, heteroclinic switch-
ings infiltrated the chimera region are shown as blue dots. The sample points A and B are
presented in Figures 2 and 4, respectively.

transforming into a saddle chimera. The system behavior represents the so-called hete-
roclinic switching between three saddle chimera states (existing in this case due to the
symmetry of the problem). Heteroclinic switching is the second characteristic regime
observed in our experiment. Parameter region for it is shown in Figure 3 in light blue
color. An example of the switching behavior, point B, is presented in Figure 4. With
further decrease of the phase-lag parameter α, the metronomes synchronize. Alterna-
tively, moving right from sample point A with increase of α beyond π/2, heteroclinic
switchings coexist with rotating waves. The basins of attraction for chimera states
and heteroclinic switchings show riddling-like pattern, see Figure 5. These states are
very sensitive to initial conditions. Experimentaly, we observed that any small per-
turbation can result in “loss” of chimera state or irregular switches between saddle
chimeras, which mostly falls into a rotating wave. With further increase of α beyond
the right boundary of this region, collective metronome dynamics in experiment and
simulation demonstrate rotating waves.

Another way of representing the heteroclinic switchings according to Ashwin and
Swift [39], is to use the equivariant projection function ζ = ei2π/3θ1 + ei4π/3θ2 + θ3
of T 3 onto T 2 torus. The heteroclinic switching, data point B, is presented in the
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Fig. 4. Heteroclinic switchings corresponding to data point B in parameter region Figure 3
in experiment (up) and simulation (down). The intervals in which metronomes makes a
phase slip are labeled with number of the metronome.

Fig. 5. Basins of attraction for chimera states (red) and switchings (black) for sample
points C(α = 1.67) and D(α = 1.75) in parameter region Figure 3. The initial condition
perturbations of metronome no. 1 indicates the large basin of attraction for stable chimera
states in the chimeric region, point C. With increase of phase-lag α out of chimeric region,
point D, basins of attraction exhibits riddling type behavior. The white sample squares are
given in Figure 6.
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Fig. 6. The magnified basins of attraction, white sample squares in Figure 5.

Fig. 7. ζ-lattice representation of heteroclinic switching, sample point B. See text.

complex ζ-plane for experiment and simulation, Figure 7. Notably, ζ-representation
of point B is qualitatively similar to the Figure 9g from reference [39].

4 Discussion

We have presented experimentally, the existence of chimera states in the minimal net-
work of coupled mechanical oscillators introducing phase-lag. The system dynamics
is described by the Kuramoto model with inertia. Our experimental results are in a
good agreement with numerical simulations. We observed that chimera states reside
in a large area of parameter space between synchronization and rotating waves. We
follow this transition varying the phase-lag parameter α and find switching behav-
ior in layers close to the border of the chimera region. The switchings coexist with
synchronization (for α < π/2) and rotating waves (for α > π/2). In the layers of
co-existence, the behavior is extremely sensitive to the initial conditions, then basins
of attraction are characterized by ridling structure.

Our experimental setup is flexible regarding varying the coupling configurations
and online change of phase-lag and magnitude of coupling. Due to the disposition of
the implemented coils, the introduced coupling force has short range characteristic
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(see appendix for details). In the future perspectives, using a modified coil structure,
we expect to achieve effective coupling force in the whole angle range of rod. Moreover,
the number N of the metronomes in the setup will be increased, in particular, to
analyze the case N = 4. It is currently under active discussion in the network society
as it represents the smallest configuration were two-group dynamics can be resolved.
Beyond this, we want to demonstrate the effect of different coupling topologies on
the system dynamics, e.g. local and global for N ≥ 4.

Appendix A

A.1 Experiment details

The Hall sensors are mounted on 3D printed plastic sensor holder, whenever the rod
Neodynium magnet passes a Hall sensor it causes a zero crossing of its output signal.
We use 7 Hall sensors for each metronome, all Hall sensor signals are 12 bit digitized
with a sampling rate of 1 kHz by a National Instrumentr PCI DAQ card (ADC in
Fig. 1) placed in a standard i7 PC. A Simulink Real-Timer implementation on this
PC performs a real-time reconstruction of the rod angles of the three metronomes
based on interpolation of lookup tables which are created by an automated calibra-
tion procedure. The coupling data are converted at 1 kHz with 12 bit resolution to
analog signals by another National Instrumentr PCI DAQ card (DAC in Fig. 1).
These analog signals are amplified separately by 6 amplifiers and fed through the
actuating coils mounted at the bottom of the metronomes on both sides of each
counter weight, Figure A.1b. Neodynium magnets mounted on the counter weights
increase the magnetic force on the rods and enable both, repelling and attracting
forces. The amplifiers allow for a precise calibration of the coil currents to ensure
that equal coupling terms produce equal forces on the rods.

A.2 Simulation details

Chimera states in Figure 2 were obtained by solving equation (1), using Runge-
Kutta 4th order method with step size h = 0.001 and initial conditions with format
(θ, θ̇) as follows: (−1.5, 0.5) for M1, (−0.64, 0.3) for M2, and (−0.01, 0.2) for M3.

Fig. A.1. Metronome readout coupling structures. (a) Angle readout of metronome using 7
Hall sensors on the sensor holder. (b) Coupling implementation mechanisms (bottom view)
using coils and magnet. The coupling force is effective as magnet enters coils.
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Other parameters of equation (1) are adopted from reference [24]. The parameter
region Figure 3 was obtained using these fixed initial conditions and parameter step
sizes δα = 0.01 and δµ/(µ) = 0.01. The basins of attraction for chimera states and
switchings in Figure 5 was obtained with random initial conditions and parameter
step sizes δθ = 0.01 and δθ̇ = 0.005. The basins of attraction for chimera states and
switchings in Figure 6 was obtained with random initial conditions and parameter
step sizes δθ = δθ̇ = 10−5.
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