000885515 001__ 885515
000885515 005__ 20240711113905.0
000885515 0247_ $$2doi$$a10.1088/1402-4896/ab66df
000885515 0247_ $$2ISSN$$a0031-8949
000885515 0247_ $$2ISSN$$a1402-4896
000885515 0247_ $$2WOS$$aWOS:000520000600065
000885515 037__ $$aFZJ-2020-03895
000885515 082__ $$a530
000885515 1001_ $$0P:(DE-HGF)0$$aMorgan$$b0
000885515 245__ $$aITER monblock performance under lifetime loading conditions in Magnum-PSI
000885515 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2020
000885515 3367_ $$2DRIVER$$aarticle
000885515 3367_ $$2DataCite$$aOutput Types/Journal article
000885515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611568206_25505
000885515 3367_ $$2BibTeX$$aARTICLE
000885515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885515 3367_ $$00$$2EndNote$$aJournal Article
000885515 500__ $$aKein Post-print verfügbar
000885515 520__ $$aThe ITER divertor will be exposed to extremely high plasma fluences over its lifetime, and it is known that plasma exposure can lead to a variety of particle-induced surface-morphology and microstructure changes in tungsten. However, no data exists at fluences comparable to those expected over extended ITER operations (1030−31 m−2) and so it is uncertain how these changes will evolve and affect the divertor performance over such long timescales. Six monoblocks were exposed to high flux plasma comparable to partially-detached plasma conditions in the ITER divertor in Magnum-PSI. Different exposures used different plasma species (H, He, D or D + He) and aimed to replicate conditions similar to those during different phases of the ITER staged approach. The highest fluence achieved was 1030 D m−2, comparable to around one year of ITER Fusion Power Operation. Post-mortem analysis by Nuclear Reaction Analysis revealed very low deuterium retention throughout the blocks, while surface analysis showed no cracking or damage, but did observe helium fuzz growth at low ion energies of 8–18 eV, below typically assumed ion energy requirements for such growth to occur. Metallographic sectioning revealed recrystallization up to 2.2 mm below the surface of monoblocks exposed at peak surface temperatures of up to 1580 °C for different durations up to ~20 h. Finite Element Method analysis coupled to metallographic and Vickers Hardness identification of the boundary of the recrystallized region identified a faster recrystallization process compared to literature expectations, reinforcing that recrystallization dynamics is an important criterion for tungsten grade selection for the ITER divertor. Overall, no major damage or failure was identified, indicating that the design is capable of fulfilling its steady-state performance requirements under high flux, high fluence plasma loading conditions in the ITER divertor.
000885515 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000885515 588__ $$aDataset connected to CrossRef
000885515 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b1
000885515 7001_ $$0P:(DE-HGF)0$$aSchwarz-Selinger$$b2
000885515 7001_ $$0P:(DE-HGF)0$$aLi, Y$$b3
000885515 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Thorsten$$b4$$ufzj
000885515 7001_ $$0P:(DE-HGF)0$$aWirtz, M.$$b5
000885515 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b6$$eCorresponding author$$ufzj
000885515 7001_ $$0P:(DE-HGF)0$$aDe Temmermann, G.$$b7
000885515 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/ab66df$$gVol. T171, p. 014065 -$$p014065 -$$tPhysica scripta$$vT171$$x1402-4896$$y2020
000885515 8564_ $$uhttps://juser.fz-juelich.de/record/885515/files/Morgan_2020_Phys._Scr._2020_014065.pdf$$yRestricted
000885515 909CO $$ooai:juser.fz-juelich.de:885515$$pVDB
000885515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b4$$kFZJ
000885515 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b6$$kFZJ
000885515 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000885515 9141_ $$y2020
000885515 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-24$$wger
000885515 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-24$$wger
000885515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000885515 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000885515 920__ $$lyes
000885515 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000885515 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000885515 980__ $$ajournal
000885515 980__ $$aVDB
000885515 980__ $$aI:(DE-Juel1)IEK-4-20101013
000885515 980__ $$aI:(DE-Juel1)IEK-2-20101013
000885515 980__ $$aUNRESTRICTED
000885515 981__ $$aI:(DE-Juel1)IMD-1-20101013
000885515 981__ $$aI:(DE-Juel1)IFN-1-20101013