001     885517
005     20210130010428.0
024 7 _ |a 10.1016/j.ijhydene.2019.04.086
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/25936
|2 Handle
024 7 _ |a altmetric:60342696
|2 altmetric
024 7 _ |a WOS:000514012200008
|2 WOS
037 _ _ |a FZJ-2020-03897
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Gonçalves, Liliana P. L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Combined experimental and theoretical study of acetylene semi-hydrogenation over Pd/Al2O3
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1603194195_2611
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The semi-hydrogenation of acetylene (C2H2 + H2 = C2H4, ΔH = −172 kJ mol−1) is a well-studied reaction that is important for purification of ethylene, C2H4, feed used in polyethylene production. Pd-based catalysts are most commonly used to remove acetylene from ethylene feed prior to Ziegler–Natta polymerization because acetylene is a poison for Ziegler–Natta catalysts. New applications of the analogous catalytic processes, with similar requirements for the conversion and selectivity, are considered for the storage of H2 within the context of the H2 economy. Here, a combination of experimental and theoretical studies was employed to explore the performance of synthesized Pd nanoparticles and the feasibility of using computational modelling for predicting their catalytic properties. Specifically, a model 5%Pd/Al2O3 nanocatalyst was successfully synthesized using high-throughput flame spray pyrolysis (FSP) method. As a catalyst for acetylene semi-hydrogenation, the material shows high conversion of 97%, a modest selectivity of 62%, and a turnover frequency of ethylene formation of 5 s−1. The experimental data were further supported by computational modelling of catalytic properties. Results of microkinetic simulations, based on parameters obtained from DFT calculations, over a Pd30/Al2O3(100) model system were correlated with experiments. The insights from this direct comparison of theory and experiments provide indications for future improvements of the theoretical predictions and for novel types of materials with improved catalytic properties.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a CritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053)
|0 G:(EU-Grant)686053
|c 686053
|f H2020-NMP-2015-two-stage
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Jianguang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vinati, Simone
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Barborini, Emanuele
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wei, Xian-Kui
|0 P:(DE-Juel1)145420
|b 4
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 5
700 1 _ |a Franco, Miguel
|0 0000-0001-8084-3056
|b 6
700 1 _ |a Sousa, Juliana P. S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Petrovykh, Dmitri Y.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Soares, Olívia Salomé G. P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kovnir, Kirill
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Akola, Jaakko
|0 P:(DE-Juel1)130496
|b 11
|e Corresponding author
700 1 _ |a Kolen'ko, Yury V.
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2019.04.086
|g Vol. 45, no. 2, p. 1283 - 1296
|0 PERI:(DE-600)1484487-4
|n 2
|p 1283 - 1296
|t International journal of hydrogen energy
|v 45
|y 2020
|x 0360-3199
856 4 _ |y Published on 2019-05-09. Available in OpenAccess from 2020-05-09.
|u https://juser.fz-juelich.de/record/885517/files/Goncalves%20et%20al%202020.pdf
856 4 _ |y Published on 2019-05-09. Available in OpenAccess from 2020-05-09.
|x pdfa
|u https://juser.fz-juelich.de/record/885517/files/Goncalves%20et%20al%202020.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885517
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21