000885518 001__ 885518
000885518 005__ 20230310131337.0
000885518 0247_ $$2doi$$a10.1016/j.nano.2019.102126
000885518 0247_ $$2ISSN$$a1549-9634
000885518 0247_ $$2ISSN$$a1549-9642
000885518 0247_ $$2Handle$$a2128/25937
000885518 0247_ $$2pmid$$apmid:31734515
000885518 0247_ $$2WOS$$aWOS:000521829800021
000885518 037__ $$aFZJ-2020-03898
000885518 041__ $$aEnglish
000885518 082__ $$a610
000885518 1001_ $$0P:(DE-HGF)0$$aAbuayyash, Adham$$b0
000885518 245__ $$aEnhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism
000885518 260__ $$aNew York, NY$$bElsevier$$c2020
000885518 3367_ $$2DRIVER$$aarticle
000885518 3367_ $$2DataCite$$aOutput Types/Journal article
000885518 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603194934_2013
000885518 3367_ $$2BibTeX$$aARTICLE
000885518 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885518 3367_ $$00$$2EndNote$$aJournal Article
000885518 520__ $$aThe development of antibacterial implant surfaces is a challenging task in biomaterial research. We fabricated a highly antibacterial bimetallic platinum (Pt)/silver(Ag) nanopatch surface by short time sputtering of Pt and Ag on titanium. The sputter process led to a patch-like distribution with crystalline areas in the nanometer-size range (1.3–3.9 nm thickness, 3–60 nm extension). Structural analyses of Pt/Ag samples showed Ag- and Pt-rich areas containing nanoparticle-like Pt deposits of 1–2 nm. The adhesion and proliferation properties of S. aureus on the nanopatch samples were analyzed. Consecutively sputtered Ag/Pt nanopatches (Pt followed by Ag) induced enhanced antimicrobial activity compared to co-sputtered Pt/Ag samples or pure Ag patches of similar Ag amounts. The underlying sacrificial anode mechanism was proved by linear sweep voltammetry. The advantages of this nanopatch coating are the enhanced antimicrobial activity despite a reduced total amount of Ag/Pt and a self-limited effect due the rapid Ag dissolution.
000885518 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000885518 536__ $$0G:(GEPRIS)286659497$$aDFG project 286659497 - Bimetallische Nanopartikel der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) und des Silbers: Synthese, Mikrostruktur und biologische Wirkung (286659497)$$c286659497$$x1
000885518 588__ $$aDataset connected to CrossRef
000885518 7001_ $$0P:(DE-HGF)0$$aZiegler, Nadine$$b1
000885518 7001_ $$0P:(DE-HGF)0$$aMeyer, Hajo$$b2
000885518 7001_ $$0P:(DE-HGF)0$$aMeischein, Michael$$b3
000885518 7001_ $$0P:(DE-HGF)0$$aSengstock, Christina$$b4
000885518 7001_ $$0P:(DE-HGF)0$$aMoellenhoff, Julian$$b5
000885518 7001_ $$0P:(DE-HGF)0$$aRurainsky, Christian$$b6
000885518 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b7
000885518 7001_ $$0P:(DE-HGF)0$$aGarzón-Manjón, Alba$$b8
000885518 7001_ $$0P:(DE-HGF)0$$aScheu, Christina$$b9
000885518 7001_ $$0P:(DE-HGF)0$$aTschulik, Kristina$$b10
000885518 7001_ $$0P:(DE-HGF)0$$aLudwig, Alfred$$b11
000885518 7001_ $$0P:(DE-HGF)0$$aKöller, Manfred$$b12$$eCorresponding author
000885518 773__ $$0PERI:(DE-600)2183417-9$$a10.1016/j.nano.2019.102126$$gVol. 24, p. 102126 -$$p102126 -$$tNanomedicine / Nanotechnology, biology and medicine$$v24$$x1549-9634$$y2020
000885518 8564_ $$uhttps://juser.fz-juelich.de/record/885518/files/Abuayyash%20et%20al%202020.pdf$$yPublished on 2019-11-15. Available in OpenAccess from 2020-11-15.
000885518 8564_ $$uhttps://juser.fz-juelich.de/record/885518/files/Abuayyash%20et%20al%202020.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-15. Available in OpenAccess from 2020-11-15.
000885518 909CO $$ooai:juser.fz-juelich.de:885518$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885518 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b7$$kFZJ
000885518 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000885518 9141_ $$y2020
000885518 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-27
000885518 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000885518 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000885518 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMED-NANOTECHNOL : 2018$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMED-NANOTECHNOL : 2018$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000885518 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000885518 920__ $$lyes
000885518 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000885518 980__ $$ajournal
000885518 980__ $$aVDB
000885518 980__ $$aUNRESTRICTED
000885518 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000885518 9801_ $$aFullTexts