000885552 001__ 885552
000885552 005__ 20240708132701.0
000885552 037__ $$aFZJ-2020-03923
000885552 1001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b0$$ufzj
000885552 1112_ $$aMSE - Materials Science and Engineering$$conline$$d2020-09-22 - 2020-09-25$$wGermany
000885552 245__ $$aCurrent rate controlled flash sintering of Gadolinium doped ceria with tailored microstructure
000885552 260__ $$c2020
000885552 3367_ $$033$$2EndNote$$aConference Paper
000885552 3367_ $$2DataCite$$aOther
000885552 3367_ $$2BibTeX$$aINPROCEEDINGS
000885552 3367_ $$2DRIVER$$aconferenceObject
000885552 3367_ $$2ORCID$$aLECTURE_SPEECH
000885552 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1605794635_21447$$xOther
000885552 520__ $$aRecently, current rate controlled flash sintering was introduced as alternative to established voltage-to-current control mode. Due to its mixed ionic and electronic conductivity, Gadolinium doped ceria (GDC) is a good candidate for demonstrating the potential of this novel operation mode. Therefore, dog bone shaped GDC samples were placed in a tube furnace and heated to 680°C. Current rate was linearly increased at well-defined rates in the range between 20 and 1000 mA min-1 to a maximum current density of 200 mA min-1. The electric field is self-generated by the resistivity of the sample. Drop of electric field indicated the on-set of the flash event. Microstructural investigations reveal that current rate controlled flash sintering increases the homogeneity of the grain size distribution and enables to tailor the grain size. Furthermore, it is expected that this novel operation mode ease scaling up of flash sintering technique by reducing the risk of hot spot formation.
000885552 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000885552 7001_ $$0P:(DE-HGF)0$$aIngraci Neto, R. R.$$b1
000885552 7001_ $$0P:(DE-HGF)0$$aRaj, R.$$b2
000885552 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b3$$ufzj
000885552 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b4$$eCorresponding author$$ufzj
000885552 909CO $$ooai:juser.fz-juelich.de:885552$$pVDB
000885552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b0$$kFZJ
000885552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000885552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000885552 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000885552 9141_ $$y2020
000885552 920__ $$lyes
000885552 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000885552 980__ $$aconf
000885552 980__ $$aVDB
000885552 980__ $$aI:(DE-Juel1)IEK-1-20101013
000885552 980__ $$aUNRESTRICTED
000885552 981__ $$aI:(DE-Juel1)IMD-2-20101013