000885553 001__ 885553
000885553 005__ 20240708132701.0
000885553 037__ $$aFZJ-2020-03924
000885553 1001_ $$0P:(DE-HGF)0$$aDaudt, Natalia$$b0
000885553 1112_ $$aEURO PM 2020$$conline$$d2020-10-05 - 2020-10-07$$wPortugal
000885553 245__ $$aPorous Transport Layers Made of Niobium/Steel Composites for Water Electrolysis
000885553 260__ $$c2020
000885553 3367_ $$033$$2EndNote$$aConference Paper
000885553 3367_ $$2DataCite$$aOther
000885553 3367_ $$2BibTeX$$aINPROCEEDINGS
000885553 3367_ $$2DRIVER$$aconferenceObject
000885553 3367_ $$2ORCID$$aLECTURE_SPEECH
000885553 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1605794151_4356$$xOther
000885553 520__ $$aIn future energy concepts, water splitting by polymer electrolyte membrane (PEM) electrolysis is a key technology for converting regenerative energy from wind or sun into hydrogen. In this study, a novel porous transport layer for PEM electrolysis units was developed, which is based on a stainless steel substrate coated with a porous Nb layer. Nb layer is expected to improve the electrochemical performance and lifetime of electrolysis cells due to formation of a stable passivation layer with good electrical conductivity. Scalable powder metallurgical techniques like tape casting, screen printing and field assisted sintering/spark plasma sintering FAST/SPS were used for manufacturing this composite structure. The porous transport layer was characterized with respect to microstructure. FAST/SPS was found to be promising to decrease interdiffusion at the interface. Finally, first electrochemical tests were conducted on laboratory scale demonstrating the potential of the composite to replace state-of-the-art titanium-based transport layers.
000885553 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000885553 7001_ $$0P:(DE-Juel1)168138$$aHackemüller, Franz Josef$$b1$$ufzj
000885553 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b2$$eCorresponding author$$ufzj
000885553 909CO $$ooai:juser.fz-juelich.de:885553$$pVDB
000885553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168138$$aForschungszentrum Jülich$$b1$$kFZJ
000885553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000885553 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000885553 9141_ $$y2020
000885553 920__ $$lyes
000885553 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000885553 980__ $$aconf
000885553 980__ $$aVDB
000885553 980__ $$aI:(DE-Juel1)IEK-1-20101013
000885553 980__ $$aUNRESTRICTED
000885553 981__ $$aI:(DE-Juel1)IMD-2-20101013