001     885554
005     20240625095122.0
024 7 _ |a 10.1101/2020.05.06.080150
|2 doi
024 7 _ |a 2128/25859
|2 Handle
024 7 _ |a altmetric:81635887
|2 altmetric
037 _ _ |a FZJ-2020-03925
100 1 _ |a Toledo, Marcelo A. S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nintedanib Targets KIT D816V Neoplastic Cells Derived from Induced Pluripotent Stem cells of Systemic Mastocytosis
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1602242905_12680
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The KIT D816V mutation is found in more than 80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. KIT D816V therefore represents a prime therapeutic target for SM. Here we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM (ASM) and mast cell leukemia (MCL) to develop a patient-specific SM disease model for mechanistic and drug discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the ATP binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V targeted therapy of advanced SM.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gatz, Malrun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sontag, Stephanie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gleixner, Karoline V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eisenwort, Gregor
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Feldberg, Kristina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kluge, Frederick
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Guareschi, Riccardo
|0 P:(DE-Juel1)172064
|b 7
700 1 _ |a Rossetti, Giulia
|0 P:(DE-Juel1)145921
|b 8
|u fzj
700 1 _ |a Sechi, Antonio S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dufva, Olli M. J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mustjoki, Satu M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Maurer, Angela
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schüler, Herdit M.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Goetzke, Roman
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Braunschweig, Till
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Simonowski, Anne
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Panse, Jens
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Jawhar, Mohamad
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Reiter, Andreas
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Hilberg, Frank
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Ettmayer, Peter
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wagner, Wolfgang
|0 0000-0002-1971-3217
|b 22
700 1 _ |a Koschmieder, Steffen
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Brümmendorf, Tim H.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Valent, Peter
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Chatain, Nicolas
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Zenke, Martin
|0 0000-0002-1107-3251
|b 27
|e Corresponding author
773 _ _ |a 10.1101/2020.05.06.080150
856 4 _ |u https://www.biorxiv.org/content/10.1101/2020.05.06.080150v1.full.pdf
856 4 _ |u https://juser.fz-juelich.de/record/885554/files/2020.05.06.080150v1.full.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/885554/files/2020.05.06.080150v1.full.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:885554
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145921
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 2
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21