000885555 001__ 885555
000885555 005__ 20240711085625.0
000885555 0247_ $$2Handle$$a2128/26224
000885555 037__ $$aFZJ-2020-03926
000885555 1001_ $$0P:(DE-HGF)0$$aDaudt, Natalia$$b0
000885555 1112_ $$aEURO PM 2020$$conline$$d2020-10-05 - 2020-10-07$$wPortugal
000885555 245__ $$aPorous Transport Layers Made of Niobium/Steel Composites for Water Electrolysis
000885555 260__ $$c2020
000885555 300__ $$a4848310
000885555 3367_ $$2ORCID$$aCONFERENCE_PAPER
000885555 3367_ $$033$$2EndNote$$aConference Paper
000885555 3367_ $$2BibTeX$$aINPROCEEDINGS
000885555 3367_ $$2DRIVER$$aconferenceObject
000885555 3367_ $$2DataCite$$aOutput Types/Conference Paper
000885555 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1605794186_29122
000885555 520__ $$aIn future energy concepts, water splitting by polymer electrolyte membrane (PEM) electrolysis is a key technology for converting regenerative energy from wind or sun into hydrogen. In this study, a novel porous transport layer for PEM electrolysis units was developed, which is based on a stainless steel substrate coated with a porous Nb layer. Nb layer is expected to improve the electrochemical performance and lifetime of electrolysis cells due to formation of a stable passivation layer with good electrical conductivity. Scalable powder metallurgical techniques like tape casting, screen printing and field assisted sintering/spark plasma sintering FAST/SPS were used for manufacturing this composite structure. The porous transport layer was characterized with respect to microstructure. FAST/SPS was found to be promising to decrease interdiffusion at the interface. Finally, first electrochemical tests were conducted on laboratory scale demonstrating the potential of the composite to replace state-of-the-art titanium-based transport layers.
000885555 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000885555 7001_ $$0P:(DE-Juel1)168138$$aHackemüller, Franz Josef$$b1$$ufzj
000885555 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b2$$eCorresponding author$$ufzj
000885555 8564_ $$uhttps://juser.fz-juelich.de/record/885555/files/EP2004848310_Daudt_Bram_final_DB.pdf$$yOpenAccess
000885555 8564_ $$uhttps://juser.fz-juelich.de/record/885555/files/EP2004848310_Daudt_Bram_final_DB.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885555 909CO $$ooai:juser.fz-juelich.de:885555$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000885555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168138$$aForschungszentrum Jülich$$b1$$kFZJ
000885555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000885555 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000885555 9141_ $$y2020
000885555 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885555 920__ $$lyes
000885555 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000885555 9801_ $$aFullTexts
000885555 980__ $$acontrib
000885555 980__ $$aVDB
000885555 980__ $$aUNRESTRICTED
000885555 980__ $$aI:(DE-Juel1)IEK-1-20101013
000885555 981__ $$aI:(DE-Juel1)IMD-2-20101013