000885562 001__ 885562
000885562 005__ 20210130010434.0
000885562 0247_ $$2doi$$a10.1007/s10533-020-00700-8
000885562 0247_ $$2ISSN$$a0168-2563
000885562 0247_ $$2ISSN$$a1573-515X
000885562 0247_ $$2Handle$$a2128/25960
000885562 0247_ $$2altmetric$$aaltmetric:91594228
000885562 0247_ $$2WOS$$aWOS:000574343500001
000885562 037__ $$aFZJ-2020-03933
000885562 082__ $$a550
000885562 1001_ $$0P:(DE-HGF)0$$aRodionov, Andrei$$b0
000885562 245__ $$aBiogeochemical cycling of phosphorus in subsoils of temperate forest ecosystems
000885562 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2020
000885562 3367_ $$2DRIVER$$aarticle
000885562 3367_ $$2DataCite$$aOutput Types/Journal article
000885562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603725234_5291
000885562 3367_ $$2BibTeX$$aARTICLE
000885562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000885562 3367_ $$00$$2EndNote$$aJournal Article
000885562 520__ $$aTree roots penetrate the soil to several meters depth, but the role of subsoils for the supply of nutrient elements such as phosphorus (P) to the trees is poorly understood. Here, we tested the hypothesis that increased P deficiency in the topsoil results in an increased microbial recycling of P from the forest subsoil. We sampled soils from four German temperate forest sites representing a gradient in total P stocks. We analyzed the oxygen isotopic composition of HCl-extractable phosphate (δ18OP) and identified differences in P speciation with increasing soil depth using X-ray absorption near-edge structure (XANES) spectroscopy. We further determined microbial oxygen demand with and without nutrient supply at different soil depths to analyse nutrient limitation of microbial growth and used nanoscale secondary ion mass spectrometry (NanoSIMS) to visualize spatial P gradients in the rhizosphere. We found that δ18OP values in the topsoil of all sites were close to the isotopic signal imparted by biological cycling when oxygen isotopes in phosphate are exchanged by enzymatic activity. However, with increasing soil depth and increasing HCl-P concentrations, δ18Ο values continuously decreased towards values expected for primary minerals in parent material at depths below 60 cm at sites with high subsoil P stocks and below more than 2 m at sites with low subsoil P stocks, respectively. For these depths, XANES spectra also indicated the presence of apatite. NanoSIMS images showed an enrichment of P in the rhizosphere in the topsoil of a site with high P stocks, while this P enrichment was absent at a site with low P stocks and in both subsoils. Addition of C, N and P alone or in combination revealed that microbial activity in subsoils of sites with low P stocks was mostly P limited, whereas sites with high P stocks indicated N limitation or N and P co-limitation. We conclude that subsoil P resources are recycled by trees and soil microorganisms. With continued weathering of the bedrock and mobilisation of P from the weathered rocks, P cycling will proceed to greater depths, especially at sites characterised by P limitation.
000885562 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000885562 588__ $$aDataset connected to CrossRef
000885562 7001_ $$00000-0003-2284-9593$$aBauke, Sara L.$$b1$$eCorresponding author
000885562 7001_ $$0P:(DE-HGF)0$$avon Sperber, Christian$$b2
000885562 7001_ $$0P:(DE-HGF)0$$aHoeschen, Carmen$$b3
000885562 7001_ $$0P:(DE-HGF)0$$aKandeler, Ellen$$b4
000885562 7001_ $$0P:(DE-Juel1)174576$$aKruse, Jens$$b5
000885562 7001_ $$0P:(DE-Juel1)129496$$aLewandowski, Hans$$b6
000885562 7001_ $$0P:(DE-HGF)0$$aMarhan, Sven$$b7
000885562 7001_ $$0P:(DE-HGF)0$$aMueller, Carsten W.$$b8
000885562 7001_ $$0P:(DE-HGF)0$$aSimon, Margaux$$b9
000885562 7001_ $$0P:(DE-HGF)0$$aTamburini, Federica$$b10
000885562 7001_ $$0P:(DE-Juel1)177770$$aUhlig, David$$b11
000885562 7001_ $$0P:(DE-HGF)0$$avon Blanckenburg, Friedhelm$$b12
000885562 7001_ $$0P:(DE-HGF)0$$aLang, Friederike$$b13
000885562 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b14
000885562 773__ $$0PERI:(DE-600)1478541-9$$a10.1007/s10533-020-00700-8$$gVol. 150, no. 3, p. 313 - 328$$n3$$p313 - 328$$tBiogeochemistry$$v150$$x1573-515X$$y2020
000885562 8564_ $$uhttps://juser.fz-juelich.de/record/885562/files/Rodionov2020_Article_BiogeochemicalCyclingOfPhospho.pdf$$yOpenAccess
000885562 8564_ $$uhttps://juser.fz-juelich.de/record/885562/files/Rodionov2020_Article_BiogeochemicalCyclingOfPhospho.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885562 909CO $$ooai:juser.fz-juelich.de:885562$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000885562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174576$$aForschungszentrum Jülich$$b5$$kFZJ
000885562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129496$$aForschungszentrum Jülich$$b6$$kFZJ
000885562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177770$$aForschungszentrum Jülich$$b11$$kFZJ
000885562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b14$$kFZJ
000885562 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000885562 9141_ $$y2020
000885562 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-10$$wger
000885562 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885562 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOGEOCHEMISTRY : 2018$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000885562 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-10$$wger
000885562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000885562 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000885562 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger
000885562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000885562 920__ $$lyes
000885562 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000885562 980__ $$ajournal
000885562 980__ $$aVDB
000885562 980__ $$aUNRESTRICTED
000885562 980__ $$aI:(DE-Juel1)IBG-3-20101118
000885562 9801_ $$aFullTexts