001     885563
005     20240708133215.0
024 7 _ |a 10.1016/j.fusengdes.2020.111623
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/25866
|2 Handle
024 7 _ |a WOS:000552961900012
|2 WOS
037 _ _ |a FZJ-2020-03934
082 _ _ |a 530
100 1 _ |a Henkel, Marion
|0 P:(DE-Juel1)168196
|b 0
245 _ _ |a Retarding field analyzer for the wendelstein 7-X boundary plasma
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602511081_1213
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A bi-directional multi-channel retarding field analyzer (RFA) probe has been successfully developed for the first time on the Wendelstein 7-X (W7-X) stellarator boundary plasma. Modifications to the RFA prototype hardware and its upgrade for the two W7-X island divertor campaigns are presented, including the electronics. In this paper the experiences and challenges operation and customizing an RFA at W7-X are discussed, as well as the data analysis using a maximum coefficient of determination method to obtain the ion temperature based on the measured modulated ion current. Edge ion temperature profiles have been measured in the standard and high iota configurations. Previous article in issue
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Y.
|0 P:(DE-Juel1)173935
|b 1
|e Corresponding author
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 2
700 1 _ |a Drews, P.
|0 P:(DE-Juel1)162257
|b 3
700 1 _ |a Knieps, A.
|0 P:(DE-Juel1)173792
|b 4
700 1 _ |a Killer, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nicolai, D.
|0 P:(DE-Juel1)130112
|b 6
700 1 _ |a Höschen, D.
|0 P:(DE-Juel1)166541
|b 7
700 1 _ |a Geiger, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Xiao, C.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Sandri, N.
|0 P:(DE-Juel1)130134
|b 10
700 1 _ |a Satheeswaran, G.
|0 P:(DE-Juel1)130135
|b 11
700 1 _ |a Liu, S.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Grulke, O.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Jakubowski, M.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 15
700 1 _ |a Otte, M.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Neubauer, O.
|0 P:(DE-Juel1)130109
|b 17
700 1 _ |a Schweer, B.
|0 P:(DE-Juel1)130154
|b 18
700 1 _ |a Xu, G.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Cai, J.
|0 P:(DE-Juel1)171371
|b 20
773 _ _ |a 10.1016/j.fusengdes.2020.111623
|g Vol. 157, p. 111623 -
|0 PERI:(DE-600)1492280-0
|p 111623 -
|t Fusion engineering and design
|v 157
|y 2020
|x 0920-3796
856 4 _ |y Published on 2020-03-20. Available in OpenAccess from 2022-03-20.
|u https://juser.fz-juelich.de/record/885563/files/Postprint_Henkel_Retarding%20field.pdf
856 4 _ |y Published on 2020-03-20. Available in OpenAccess from 2022-03-20.
|x pdfa
|u https://juser.fz-juelich.de/record/885563/files/Postprint_Henkel_Retarding%20field.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885563
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162257
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130134
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130135
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)130109
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)130154
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21