000885564 001__ 885564
000885564 005__ 20210130010436.0
000885564 037__ $$aFZJ-2020-03935
000885564 041__ $$aEnglish
000885564 1001_ $$0P:(DE-Juel1)165875$$aTan, Zihan$$b0$$eCorresponding author$$ufzj
000885564 1112_ $$aNIC Symposium 2020$$cJülich$$d2020-02-27 - 2020-02-28$$wGermany
000885564 245__ $$aQuasi-two-dimensional diffusion of interacting protein monomers and dimers: a MPC simulation study
000885564 260__ $$c2020
000885564 3367_ $$033$$2EndNote$$aConference Paper
000885564 3367_ $$2BibTeX$$aINPROCEEDINGS
000885564 3367_ $$2DRIVER$$aconferenceObject
000885564 3367_ $$2ORCID$$aCONFERENCE_POSTER
000885564 3367_ $$2DataCite$$aOutput Types/Conference Poster
000885564 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1603174400_2284$$xInvited
000885564 520__ $$aUnderstanding lateral diffusion of proteins along a membrane is of importance in biological soft matter science. An example in case is postsynaptic neuronal signal transduction where specific proteins diffuse alongside a postsynaptic membrane, triggering a cascade of biochemical processes. There are challenging questions to answer such as how the collective and self-diffusion of the proteins are affected by their direct and hydrodynamic interactions for larger areal protein concentrations.Using the multi-particle collision dynamics (MPC) simulation methods [1], we explore protein diffusion under quasi-two-dimensional (Q2D) confinement, for two different model systems of proteins. In the first system, the proteins are modeled as Brownian spheres interacting, respectively, by a hard-sphere potential serving as a reference potential, and by a soft potential with competing short-range attractive and long-range repulsive parts. For a minimalistic description of proteins diffusing along a cytosol-membrane interface, the Brownian spheres are confined to lateral motion in a planar monolayer embedded in an unbound three-dimensional Newtonian fluid. The time scales in the dynamic simulations extend from very short times where inertial effects are resolved, up to long times where the solvent-mediated hydrodynamic interactions between the proteins are fully developed and non-retarded [2]. By computing velocity autocorrelation functions, mean-square displacements and Fourier-space current auto-correlation functions, we quantify how concentration-induced correlations affect, e.g., the anomalous enhancement of large-scale collective diffusion under Q2D confinement [3], and the development of inter-protein hydrodynamic interactions by multiple scattering of sound and by vorticity diffusion [2]. The second model system relates to the diffusion of a human dumbbell-shaped M2 muscarinic acetylcholine receptor protein where one segment is embedded in the neuronal cell membrane, and the other one in the cytosol. The protein is simply modeled by a two-beads dimer with the upper bead immersed in a high-viscosity fluid sheet (fluid A) mimicking the membrane, and the lower one in a lower-viscosity fluid B mimicking the intra- and also extracellular environment. We use a recently developed MPC scheme for generating a fluid sheet A inside another fluid B [4]. Using this mesoscale method, diffusion can be probed over time spans not accessible in atomistic MD simulations of proteins. We study the mean squared displacement and velocity autocorrelation function of the individual bead centers, as well as of the hydrodynamic center of mobility of the dumbbell, in dependence of the viscosity ratio, sheet thickness, and interfacial bead distances.References:[1] G. Gompper, T. Ihle, D. M. Kroll, R. G. Winkler, Adv. Polym. Sci, 221, 1-87 (2008). [2] Z. Tan, J. K. G. Dhont, V. Calandrini, and G. Nägele, paper in preparation.[3] S. Panzuela and R. Delgado-Buscalioni, Phys. Rev. Lett., 121, 048101 (2018).[4] Z. Tan, J. K. G. Dhont, R. G. Winkler, and G. Nägele, paper in preparation.
000885564 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000885564 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000885564 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1
000885564 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b1$$ufzj
000885564 7001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b2$$ufzj
000885564 7001_ $$0P:(DE-Juel1)130858$$aNaegele, Gerhard$$b3$$ufzj
000885564 8564_ $$uhttp://www.john-von-neumann-institut.de/nic/EN/News/Symposium/NIC-Symposium-2020/PosterSession/BIO_16.pdf?__blob=publicationFile
000885564 909CO $$ooai:juser.fz-juelich.de:885564$$pVDB
000885564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165875$$aForschungszentrum Jülich$$b0$$kFZJ
000885564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b1$$kFZJ
000885564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166168$$aForschungszentrum Jülich$$b2$$kFZJ
000885564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b3$$kFZJ
000885564 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000885564 9141_ $$y2020
000885564 920__ $$lyes
000885564 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000885564 980__ $$aposter
000885564 980__ $$aVDB
000885564 980__ $$aI:(DE-Juel1)IBI-4-20200312
000885564 980__ $$aUNRESTRICTED