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Continuous phase spaces have become a powerful tool for describing, analyzing, and tomographically
reconstructing quantum states in quantum optics and beyond. A plethora of these phase-space techniques are
known, however a thorough understanding of their relations is still lacking for finite-dimensional quantum states.
We present a unified approach to continuous phase-space representations which highlights their relations and
tomography. The infinite-dimensional case from quantum optics is then recovered in the large-spin limit.
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I. INTRODUCTION

Phase spaces provide both theoretically and experimen-
tally useful ways to visualize and analyze abstract states of
infinite- and finite-dimensional quantum systems. A plethora
of phase-space representations are known [1–4], including the
Glauber P, Wigner, and Husimi Q function, each of which
has provided insights in quantum optics, quantum informa-
tion theory, and beyond. Phase spaces have also played an
essential role in characterizing the quantum nature of light
and become a natural language for quantum optics due to
the seminal work of Glauber (see [5–7]), also clarifying
their interrelations in terms of Gaussian convolutions. Beyond
quantum optics, phase spaces are conceptually invaluable
and provide a complete description of quantum mechanics.
They mirror and naturally reduce to classical phase spaces in
the limit of a vanishing Planck constant [8–13]. Phase-space
techniques and their associated quantizations [14–16] have
been widely applied in the context of harmonic analysis and
pseudodifferential operators [17–21]. In this paper, we focus
on finite-dimensional quantum states, for which phase-space
methods have been explored to a lesser extent.

Recent advances in experimentally creating entangled
quantum states for spins or spinlike systems, such as atomic
ensembles [22,23], Bose-Einstein condensates [24–32],
trapped ions [33–35], and light polarization [36–38], have
been in certain cases illustrated with phase-space techniques
and therefore call for a more profound understanding of these
tools with regard to finite-dimensional quantum states. To this
end, we present a general approach to continuous phase spaces
for spins which clarifies their interrelations by conveniently
translating between them, while emphasizing the connection
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to the infinite-dimensional case from quantum optics. We do
not consider discrete phase spaces such as the one proposed
by Wootters [39] (see also [40–42] and references therein).

Phase-space representations have become crucial in the
tomographic reconstruction of infinite-dimensional quantum
states [1,43]. The optical homodyne tomography reconstructs
the quantum state of light by directly measuring the planar
Radon transform of the Wigner function [43,44]. Also, the
Husimi Q function [45] has been experimentally measured
for various systems [23,32,34,36,46–48]. We detail how to to-
mographically reconstruct a class of finite-dimensional phase-
space representations.

In this paper, we develop a general and unified description
of continuous phase-space representations for quantum states
of a single spin with arbitrary, integer, or half-integer spin
number J (i.e., a qudit with d = 2J+1), which is simultane-
ously applicable to experimental bosonic systems consisting
of indistinguishable qubits [50–53]. A single qudit can be
identified with a bosonic system consisting of 2J indistin-
guishable qubits: Fig. 1 depicts a quantum state of a single
qudit (i.e., a single spin J) corresponding to a (generalized) W
state [54] (i.e., Dicke state) of 2J indistinguishable qubits (see
also Sec. III A of [51] for an explicit map and Chap. 3.8 of [55]
or [56] for links to the second quantization). In particular, we
address the following fundamental open questions related to
finite-dimensional phase-space representations (e.g., Glauber
P, Wigner, and Husimi Q).

(a) How can they be systematically defined to naturally
recover the infinite-dimensional case of quantum optics in the
limit of large J?

(b) How can they be transformed into each other?
(c) How can their experimental tomographic approaches be

formulated in a unified way?
We present answers to these questions for the full class

of (finite-dimensional) s-parametrized phase-space represen-
tations with −1 � s � 1. Our approach relies on rotated
parity operators and thereby significantly simplifies earlier
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FIG. 1. (a) s-parametrized phase-space representations F|W 〉(θ, φ, s) for s ∈ {1, 1/2, 0, −1/2, −1} of a (generalized) W state |W 〉 for a
single spin with J = 10, or equivalently the symmetric Dicke state |J, J−1〉 of 2J indistinguishable qubits with a single Majorana vector
pointing to the south pole and 2J−1 vectors pointing to the north pole. A decreasing s (left-to-right) which smears out F|W 〉(θ, φ, s) is interpreted
as a Gaussian-like convolution. Red (dark gray) and green (light gray) represent positive and negative values, respectively. The brightness
reflects the absolute value of the function relative to its global maximum η. (b) Spherical Wigner functions F|W 〉(θ, φ, 0) for increasing J
approach their planar counterpart, i.e., the single-photon state F|1〉(α, 0) (see Sec. II). Identical coordinate patches with −1.2 � x, y � 1.2 have
been used, where x = R sin θ cos φ and y = R sin θ sin φ in the first three plots and x = Re(α) and y = Im(α) in the last one. [For the plots in
(b), methods from [49] to efficiently approximate phase-space representations for large J have been applied.]

work (such as [57] and particular cases discussed in [58,59]).
It also extends [60–64] in the case of single spins (and
bosonic systems consisting of indistinguishable qubits) to all
s-parametrized phase spaces. In addition to a deeper theoreti-
cal knowledge connecting planar and spherical phase spaces,
the insights provided here will also guide practitioners to
design innovative experimental schemes, such as the tomo-
graphic reconstruction of phase-space representations. Before
discussing finite-dimensional quantum states, we first review
important properties of the infinite-dimensional phase spaces
from quantum optics.

II. SUMMARY OF INFINITE-DIMENSIONAL
PHASE-SPACE REPRESENTATIONS

Let us recall the s-parametrized phase-space distribution
function (where −1 � s � 1)

Fρ (�, s) = Tr [ ρ D(�)�sD†(�)] (1)

as the expectation value of the parity operator �s (vide infra)
transformed by the displacement operator D(�), which acts
on coherent states via D(�)|0〉 = |�〉 [65] (refer also to
[7,17,43,66]). We have developed and discussed the theoreti-
cal foundations for the case of infinite dimensions considered
in formula (1) in [67], while building on earlier work by
Grossmann [68] for Wigner functions. Here, |0〉 denotes the
vacuum state and � fully parametrizes a phase space with

either the variables p and q or the complex eigenvalues α of
the annihilation operator [5,43].

Different parity operators �s lead to different distribu-
tion functions Fρ (�, s). The Q function Qρ = Qρ (�) :=
Fρ (�,−1) arises from the parity operator �−1 the entries of
which are given by [�−1]nn := δn0 [66] in the number-state
representation [43]. Similarly, the Wigner function Wρ :=
Fρ (�, 0) is determined by [�0]nn = 2(−1)n [66], which in-
verts phase-space coordinates via �0|�〉 = |−�〉 [17]. The
P function Pρ := Fρ (�, 1) is singular for all pure states [7],
and the entries of its parity operator �1 diverge in the number
state representation [66]. The discussed representations are
considered in the upper part of Fig. 2. An example is given
by the vacuum state |0〉 the Wigner function W|0〉 = 2e−2|α|2

of which is a Gaussian distribution. The respective Q function
Q|0〉 = e−|α|2 is a Gaussian of double width and the P function
is the two-dimensional delta function P|0〉 = δ(2)(α).

We now recollect how to transform between phase-
space representations with Gaussian convolutions [7,43]. Two
phase-space distribution functions K (�) and F (�) can be
combined using their convolution [43]

[K ∗ F ](�) =
∫

[D−1(�)K (�′)]F (�′) d�′, (2)

which corresponds to a multiplication in the Fourier
domain. The convolution of a distribution function Fρ (�, s)
with the vacuum-state representation F|0〉(�, s′) results in the
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FIG. 2. Phase-space representations Wρ , Qρ , and Pρ of infinite-
or finite-dimensional density operators ρ as expectation values of the
parity operator �s or Ms [dashed arrows, see Eq. (1) or Eq. (4)].
Also shown is the transformation by Gaussian smoothing with W|0〉
and Q|0〉 or reversibly with W|JJ〉 and Q|JJ〉 [solid arrows, see Eq. (3)
or Eq. (10)].

phase-space distribution function

Fρ (�, s+s′−1) = F|0〉(�, s′) ∗ Fρ (�, s) (3)

of type s+s′−1. A convolution P|0〉(�) ∗ F (�) = F (�) with
the P function P|0〉 acts as an identity operation, while a convo-
lution with the Gaussians W|0〉 or Q|0〉 blurs out Fρ (�, s). This
Gaussian smoothing is widely used in image processing and
allows us to transform different phase-space representations
into each other [43] as in the upper part of Fig. 2. For example,
the non-negative Q function Qρ = W|0〉 ∗ Wρ is obtained from
the Wigner function Wρ by convolution with W|0〉; the negative
regions in Wρ are therefore bounded by the variance 1/4 of
W|0〉 [43].

III. PHASE-SPACE REPRESENTATIONS FOR SPINS

A. Definition of phase-space representations for spins

We establish a consistent formalism for s-parametrized
phase-space representations (−1 � s � 1) for quantum states
of single spins, which in the limit of an increasing spin number
J converges to the just discussed infinite-dimensional case.
The continuous phase space � := (θ, φ) can be completely
parametrized in terms of two Euler angles of the rotation
operator R(�) = R(θ, φ) := eiφJz eiθJy , where Jz and Jy are
components of the angular momentum operator [69]. The
rotation operator R(�) replaces the displacement operator
D(�) and maps the spin-up state |JJ〉 to spin coherent
states |�〉 = R(�)|JJ〉 [59,65,70,71]. This leads to a spherical
phase space, the radius of which is set to R := √

J/(2π ).
Result 1. For a density operator ρ of a single spin J , the

s-parametrized phase-space representation [see Eq. (1)]

Fρ (�, s) := Tr [ ρ R(�)MsR†(�)] (4)

is the expectation value of the rotated parity operator

Ms := 1

R

2J∑
j=0

√
2 j+1

4π
(γ j )

−s T j0, (5)

which is a weighted sum of zeroth-order tensor operators.

In Result 1, the diagonal tensor operators [T j0]mm′ =
δmm′

√
(2 j+1)/(2J+1)CJm

Jm, j0 of order zero [72] have been
applied in Eq. (5), and they can be specified via the
Clebsch-Gordan coefficients CJm

Jm, j0 [69] where j ∈ N∪{0}
and m, m′ ∈ {−J, . . . , J}. We also use the coefficients γ j :=
R

√
4π (2J )! [(2J+ j+1)! (2J− j)! ]−1/2. With increasing spin

number J , the parity operators Ms converge to the infinite-
dimensional operators �s in Eq. (1) (refer to [73], Theorem
2.1, for a proof), while rotations transform into translations
along the tangent of a sphere [59,71,74,75]. The phase-space
representations in Eq. (4) fulfill the Stratonovich postulates
[57,58,76–78]; an s-parametrized version is given in [57].
Prior results [60–64] using rotated parity operators are ex-
tended for single spins to all s-parametrized phase spaces.
For Wigner functions, our definition conforms to [64] but
differs from Eq. (8) in [62]. The latter can be identified as
a linearly shifted Q function aQρ − b, and it relaxes the pos-
tulate tr(AB) = ∫

S2 FA(�, 0)FB(�, 0) d�. We consider in this
paper only spherical rotations (even for qudits) which yield
spherical phase spaces, forgoing general rotations [61–63,79].
Generalizations to coupled spins are known in the Wigner case
[62,63,80]; our methods in [78] are also applicable.

We further highlight how the approach of Result 1 connects
to earlier work. An equivalent form of the s-parameterized
phase-space representation in Eq. (4) has been previously
determined in Eq. (5.28) of [57] (up to a global factor) as

Fρ (�, s) = Tr [ ρ �s(θ, φ)],

with �s(θ, φ) := 1

R

2J∑
j=0

j∑
m=− j

(γ j )
−s T jm [Y jm(θ, φ)]∗ (6)

using the kernel �s(θ, φ). Here, [Y jm(θ, φ)]∗ denotes the
complex conjugate of Y jm(θ, φ). The work of [57,81] builds
on the particular cases of s ∈ {−1, 0, 1} obtained in [77].
Along similar lines, the pioneering work of [58] proposed
spherical-harmonics expansions [see Eq. (3.15) in [58]] for
spin phase-space representations

F (Ω )
ρ (θ, φ) =

2J∑
j=0

j∑
m=− j

c(Ω )
jm Y jm(θ, φ), (7)

which are indexed by Ω = Ω jm and use the coefficients
c(Ω )

jm = Tr [ρ T†
jm]/Ω jm. For s-parametrized phase spaces, one

has Ω = Ω jm = Rγ s
j . Note that [58] established the explicit

form of Ω jm only for Husimi Q functions, i.e., s = −1.
The case of Wigner functions (s = 0) has been discussed in
[59]. Note that the tensor-operator components T jm can be
explicitly given as [T jm]m1m2 = √

(2 j+1)/(2J+1)CJm1
Jm2, jm =

(−1)J−m2 C jm
Jm1,J,−m2

using Clebsch-Gordan coefficients and
m1, m2 ∈ {J, . . . ,−J} [57,69,82,83].

By using rotated parity operators, the approach of Result
1 has important conceptual advantages when compared to
Eqs. (6) and (7). First, Result 1 separates the dependence
on the parameter s in the parity operator from the rotations.
Second, Eq. (4) naturally transforms in the large-spin limit
into the infinite-dimensional case discussed in Eq. (1) by re-
placing rotations R(�) with displacements D(�). Third, the
above-mentioned tensor operators and spherical-harmonics
decompositions are averted and the rotations R(�) can be
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FIG. 3. Parity-operator entries [Ms]mm corresponding to Eq. (5) [and equivalently the Stern-Gerlach reconstruction weights in Eq. (12)] for
a single spin J shown for the P function Pρ , the Wigner function Wρ , and the Q function Qρ .

efficiently calculated via the Wigner D-matrix [84,85]. Fi-
nally, the particular form given in Result 1 enables us to
develop general tomography formulas in Sec. IV below.

Particular cases of Result 1 are considered in the lower part
of Fig. 2. The Q function specifies the expectation value of
rotated spin-up states, where [M−1]mm := δmJ (right of Fig. 3),
and its zeros are the so-called Majorana vectors [36,86,87].
The Wigner function determines the expectation value of the
rotated parity operator M0. The matrix entries [M0]mm are
shown in the middle of Fig. 3, highlighting their infinite-
dimensional limit of ±2 for m/J ≈ 1 [74]. The matrix entries
[M1]mm for the parity operator of the P function are shown in
the left panel of Fig. 3, including their rapid divergence.

Further exploring the infinite-dimensional limit of large J ,
the phase-space representation

F|JJ〉(θ, s) := 1

R2

2J∑
j=0

√
2 j+1

4π
(γ j )

1−s Y j0(θ ) (8)

of the spin-up state (i.e., the ground state with least uncer-
tainty) is easily expanded into a weighted sum of axially
symmetric spherical harmonics Y j0(θ ). The examples Q|JJ〉,
W|JJ〉, and P|JJ〉 are plotted in Fig. 4 as functions of the angle
θ . Even though the Gaussian width of F|JJ〉(θ, s) shrinks in
terms of θ with increasing J , F|JJ〉(θ, s) converges to the
Gaussian F|0〉(�, s) related to the infinite-dimensional vacuum
state if parametrized by the relevant arc length a := θR =
θ
√

J/(2π ) [Fig. 1(b) illustrates the sphere-to-plane transition
in the infinite-dimensional limit].

For example, Q|JJ〉 is equal to the Wigner D-matrix element
|DJ

JJ |2 = cos (θ/2)4J , and it converges rapidly with increasing
J to the Gaussian Q|0〉(α) = e−|α|2 = e−a2π = e−Jθ2/2 using
the phase-space coordinate α = √

πae−iφ [70,71]. Similarly,
W|JJ〉 rapidly converges to the normalized Gaussian W|0〉 =

2e−2|α|2 = 2e−2a2π = 2e−Jθ2
of the vacuum state. The P func-

tion P|JJ〉(θ ) := δ̃(�) is the spherical sinc function, i.e., a
truncated version of the spherical delta function δ(�) :=
δ(θ )δ(φ)/ sin θ (where the tilde projects onto the physical
subspace of spherical harmonics with rank j � 2J [88]),
which by definition approaches the delta function in the large-
spin limit δ(�) := ∑∞

j=0

√
(2 j+1)/(4π ) Y j0(�). Qualitative

similarities between certain finite- and infinite-dimensional
Wigner functions were already highlighted in [59]. But this
connection is clarified in our formulation by emphasizing the
large-spin convergence for all of the s-parametrized phase
spaces (refer to [73], Theorem 2.1, for a proof).

B. Spherical convolution

To translate between the different spherical phase-space
representations in the lower part of Fig. 2 (which can be
done reversibly assuming arbitrary precision), we define the
convolution [see Eq. (2)]

[K ∗ F ](�) :=
∫

S2
[R−1(�)K (�′)]F (�′) d�′ (9)

via a spherical integration where d�′ = R2 sin θ ′dθ ′ dφ′.
First, the kernel function K (�′) is rotated by R−1(�) to
K (�′−�), which is then projected onto the distribution
function F (�′) via a spherical integral. The kernel function
K (�′) has to be axially symmetric due to the so-called
Funk-Hecke theorem [89,90]. The spherical convolution is a
multiplication in the spherical-harmonics domain, and substi-
tuting spherical harmonics into Eq. (9) yields Y j′0 ∗ Y jm =
R2√4π/(2 j+1) Y jm δ j j′ . This allows us to transform between
different spherical phase-space representations.

Result 2. The convolution of a phase-space
distribution function Fρ (�, s) with the phase-space

022318-4



CONTINUOUS PHASE-SPACE REPRESENTATIONS … PHYSICAL REVIEW A 101, 022318 (2020)

FIG. 4. Phase-space representations F|JJ〉(θ, s) of the spin-up state |JJ〉 [see Eq. (8)]. As J increases, Q|JJ〉 and W|JJ〉 rapidly converge to the
Gaussian distributions Q|0〉 and W|0〉 (dashed line); P|JJ〉 slowly approaches the delta function P|0〉 = δ(�).

representation F|JJ〉(�, s′) of the spin-up state results in a
type-(s+s′−1) distribution function [see Eq. (3)]

Fρ (�, s+s′−1) = F|JJ〉(θ, s′) ∗ Fρ (�, s). (10)

The pioneering work of [58] proposed spin phase-space
representations in the form of spherical-harmonics expansions
[refer to Eq. (7)] and defined their relations using integral
transformation kernels [see (3.19) in [58]]. Result 2 clarifies
that these relations are in fact spherical convolutions, in com-
plete analogy with the infinite-dimensional case considered in
quantum optics. The general form of Eq. (10) has not been
formally described in the literature before. Some convolution
properties were detailed for discrete, planar phase spaces in
[91,92]. We want to also stress that spherical convolutions
have efficient implementations [93,94].

In the infinite-dimensional limit of an increasing spin
number J , Eq. (10) turns into Eq. (3). We emphasize that the
convolution transformation in Eq. (10) is reversible (assuming
arbitrary precision) for general parameters s, s′ ∈ R [as the
coefficients γ j in Eq. (8) are nonzero]. Also, a convolution
P|JJ〉(θ ) ∗ F (�, s) = F (�, s) with the P function P|JJ〉(θ ) acts
as an identity operation, just as in the infinite-dimensional
case. The Wigner function Wρ can be transformed into the
non-negative Q function Qρ = W|JJ〉 ∗ Wρ by Gaussian-like
smoothing (see Fig. 1). Consequently, the negative regions
of Wρ are bounded by the variance ∝ 1/4 of W|JJ〉, similar
as for infinite-dimensional phase spaces. Result 2 completes
our characterization of how to transform between spherical
phase-space representations as illustrated in Fig. 2.

C. Examples of phase-space functions

Figure 5 depicts phase-space representations of typical
finite-dimensional quantum states. The P, Wigner, and Q
functions are shown in a triangular arrangement along with
their corresponding convolution kernels, which generate the
spherical convolutions from Eq. (10) between edges of the
triangle.

In Fig. 5(a), we consider the quantum state of a single
spin J corresponding to the 2J-qubit Greenberger-Horne-
Zeilinger (GHZ) state |GHZ〉 = (|0〉⊗2J + |1〉⊗2J )/

√
2 =

(|JJ〉 + |J,−J〉)/
√

2 consisting of a quantum superposition of
the two symmetric Dicke states given by the spin-up and spin-
down state (which can be identified with a 2J-photon NOON
state). This GHZ state factorizes up to permutations into a
product of its Majorana vectors

⊗
k |vk〉 [86,87], where |vk〉

is a single-qubit state with Bloch vector vk . These Majorana

vectors correspond to zeros of the Q function and point to
the edges of a regular n-gon [see Q|GHZ〉 in Fig. 5(a)]. The
zeros of the Q function can, e.g., be determined by spherically
convolving the Wigner function with the convolution kernel
W|JJ〉 (see Sec. III B), and the negative (green) lobes of P|GHZ〉
and W|GHZ〉 in Fig. 5(a) identify the direction of the Majorana
vectors. The Q function largely resembles the classical super-
position of a spin-up and a spin-down state, but has a fivefold
symmetry.

Figure 5(b) shows phase-space plots of the squeezed state
exp[−iθ I2

y /2]|JJ〉 with squeezing angle θ := 0.3 for a single
spin with spin number J = 10, where the state is squeezed
along the y axis [96]. A random pure state of a single spin
with spin number J = 4 is depicted in Fig. 5(c).

IV. TOMOGRAPHY

A. Pointwise tomography of phase-space functions

We detail how phase-space representations are recovered
from Stern-Gerlach experiments assuming that a chosen den-
sity operator ρ can be prepared identically and repeatedly.
In a single Stern-Gerlach experiment, one detects the density
matrix ρ in a projection eigenstate according to a reference
frame rotated by � (i.e., by rotating the measurement device
or inversely rotating ρ). For repeated Stern-Gerlach experi-
ments, measured frequencies converge to the Stern-Gerlach
probabilities

pm(�) = 〈Jm|R†(�)ρR(�)|Jm〉. (11)

In the limiting case of infinite-dimensional parity operators
[67,73,74], this is known in quantum optics as the “direct
measurement” technique [97–100]. Here, we have the finite-
dimensional equivalent.

Result 3. The phase-space representations

Fρ (�, s) =
J∑

m=−J

[Ms]mm pm(�) (12)

of a (2J+1)-dimensional quantum state ρ are directly de-
termined for each phase-space point � by the probability
distributions pm(�) of repeated Stern-Gerlach experiments
[see Eq. (11)]. The weights [Ms]mm are given by the parity
operator from Eq. (5).

The pointwise tomography of Result 3 has not been de-
scribed in this generality before. We discuss different cases
of the parameter s by referring to the examples of phase-
space functions in Fig. 5. In particular, the P functions
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FIG. 5. P, Wigner, and Q functions with their corresponding convolution kernels for (a) a quantum state of a spin J = 5/2 corresponding
to the GHZ state |GHZ〉 of 2J indistinguishable qubits, (b) a squeezed state |sq〉 of a spin J = 10, and (c) a random state |rnd〉 of a spin J = 4
[95] (see Sec. III C). Red (dark gray) and green (light gray) represent positive and negative values, respectively. The absolute values of the
spherical function relative to its global maximum η are given by the plotted surface (left) or the brightness (right), where each variant highlights
different properties of the plotted functions.

P|GHZ〉, P|sq〉, and P|rnd〉 in Fig. 5 show considerable detail,
while mostly utilizing probabilities pm(�) of small |m| (see
Fig. 3). The Wigner functions W|GHZ〉, W|sq〉, and W|rnd〉 in
Fig. 5 require all 2J+1 Stern-Gerlach probabilities pm(�)
[22,29,30,63,101] and show fewer detail consistent with being
smoothed versions of the corresponding P functions. Finally,
the Q functions show little detail due to a second Gaussian
smoothing (yet low-rank contributions would still be recog-
nizable [23,30,32,34,53]) and are fixed by the probability
pJ (�) of the spin-up state [48]. Certain features of our
tomography approach such as the weights in Eq. (12) are
invariant under slight variations of a sufficiently large spin
number J , and this might be useful in atomic ensembles
[22,23], Bose-Einstein condensates [24,25,27–30], or trapped
ions [33–35].

We detail how Result 3 is applied in the estimation of
the s-parametrized phase-space function Fρ (�, s) of a quan-
tum state ρ at a single phase-space point � = (θ, φ): the
quantum state is rotated according to the angles (θ, φ), a
projective Stern-Gerlach measurement is performed, the mea-
sured eigenstate m is recorded, and the whole procedure is
repeated Nr times. Then the probabilities pm(θ, φ) can be
estimated from the relative frequencies Nm/Nr of the eigen-
states, where the eigenstate m has been recorded Nm times
during the measurements. This enables the reconstruction
of a phase-space function at the phase-space point (θ, φ)
as a linear combination of the estimated probabilities in
Eq. (12), where the weights [Ms]mm are illustrated in Fig. 3.
The Wigner-function tomography for a random ensemble of
Nρ = 2200 spin-5/2 states (which are distributed with respect
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FIG. 6. Simulated tomography of Wigner functions Wρ (θ, φ) for a random ensemble of Nρ = 2200 spin-5/2 states ρ. (a) Pointwise
tomography at the phase-space point (θ, φ) = (0, 0) as discussed in Sec. IV A. The relative reconstruction errors (relative to the global
maximum of the ideal phase-space function) empirically follow a Gaussian distribution. Its mean μ and standard deviation σ are obtained
from a fitted Gaussian distribution. And σ empirically scales as N−1/2

r with the number Nr of repetitions. (b) Pointwise tomographies from
(a) evaluated at 222 = 484 phase-space points (as discussed in Sec. IV B) for points (θk, φq ) from an equiangular grid (refer to Sec. IV C). The
relative reconstruction errors (relative to the global maximum of the ideal phase-space function) are averaged over the grid points (θk, φq ).
The mean μ and standard deviation σ of the average error are obtained from a fitted Gaussian distribution; σ empirically scales as N−1/2

r .
(c) Full tomography as discussed in Sec. IV C using an equiangular grid of 222 = 484 phase-space points. The relative L2-norm errors (relative
to the global maximum of the ideal phase-space function) empirically follow a log-normal distribution. The mean and standard deviation are
determined from a fitted log-normal distribution and the mean also scales as N−1/2

r . (d) Examples of reconstructed Wigner functions from
(c) with their relative L2-norm errors.

to the Hilbert-Schmidt distance [102]) has been simulated
with Nr = 102, 103, and 104 repetitions for the phase-space
point (θ, φ) = (0, 0) and for each reconstructed random state.
Figure 6(a) shows the reconstruction errors which follow an
empirical Gaussian (i.e., normal) distribution. The standard
deviation empirically scales with N−1/2

r and therefore van-
ishes as the number Nr of repetitions increases. We now
apply the pointwise tomography first for multiple phase-space
points and then to obtain a full tomography of a phase-space
function.

B. Pointwise tomography for multiple phase-space points

The pointwise tomography of Result 3 can be easily re-
peated for multiple phase-space points. This enables an ap-
proximate pointwise reconstruction of phase-space functions:

the approximation improves as the number of phase-space
points increases. Figure 6(b) shows the average error of point-
wise reconstructed phase-space functions, and this average
error reduces as the number of Stern-Gerlach measurements
increases. However, this approximation has a notably discrete
flavor as it only recovers a phase-space function at the chosen
phase-space points and not between them. In Sec. IV C below,
we detail a measurement strategy that relies on a finite number
of phase-space points (together with enough Stern-Gerlach
repetitions Nr) in order to recover the full phase-space func-
tion as a linear combination of spherical harmonics.

C. Full tomography of phase-space functions

The full tomography of a phase-space function relies
on multiple pointwise tomographies. Assuming that enough
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FIG. 7. Relative reconstruction errors (relative to the global maximum of the ideal phase-space function) of simulated full tomographies of
P, W , and Q functions evaluated at the phase-space point (θ, φ) = (0, 0) for a random ensemble of Nρ = 2200 spin-5/2 states using Nr = 1000
Stern-Gerlach repetitions. This is similar as discussed in Sec. IV C but the reconstruction errors are only evaluated at (θ, φ) = (0, 0). The
directly reconstructed phase-space functions (see Result 4) for the green histograms on the diagonal are in a second step transformed with
a spherical convolution (see Result 2) to P, W , and Q functions for the red, off-diagonal histograms. The direct reconstruction is usually
preferable. The mean μ and standard deviation σ are obtained from a fitted Gaussian distribution.

repetitions Nr of the Stern-Gerlach measurements are per-
formed for each phase-space point, the corresponding
spherical-harmonics coefficients can then be obtained from
pointwise tomographies for a finite number of phase-space
points [90,103]. One straightforward method to determine
the spherical-harmonics decomposition of a spin-J function
is by performing pointwise tomographies via Result 3 on
an equiangular grid of at least (4J+2)2 phase-space points
(or combinations of rotation angles). [This does not imply a
general lower bound and other measurement strategies might
be able to use fewer than (4J+2)2 phase-space points.] In
this case, one can apply the sampling technique described
in Theorem 3 of [103] and Theorem 7.1 of [90], which
determines a phase-space function as a linear combination of
spherical harmonics. The equiangular grid is given by at least
(4J+2)2 combinations of rotation angles θk = (πk)/Np and
φq = (2πq)/Np for k, q ∈ {0, . . . , Np − 1} and Np � 4J+2.

Result 4. The complete phase-space function Fρ (�, s) =∑2J
j=0

∑ j
m=− j c jm Y jm(�) is determined by its spherical-

harmonics expansion coefficients c jm, which are computed
from phase-space reconstructions F̃ρ (θk, φq, s) at the phase-
space points (or angles) (θk, φq) as

c jm = 2π
√

2

Np

Np−1∑
k=0

Np−1∑
q=0

α
(Np)
k F̃ρ (θk, φq, s) [Y jm(θk, φq)]∗.

A closed formula for the real coefficients α
(Np)
k can be

found in [90,103]. Increasing the number Np beyond its lower
bound 4J+2 might help to reduce errors due to experimental
imperfections in precisely setting the rotation angles. Note
that the pointwise reconstructions F̃ρ (θk, φq, s) are usually
susceptible to shot noise (due to the finite number Nr of Stern-
Gerlach repetitions) and this also affects the full tomography
of the phase-space function. In Fig. 6(c), the full tomog-
raphy using Result 4 is simulated for a random ensemble
of Nρ = 2200 spin-5/2 quantum states. The reconstruction
error is given as the relative L2-norm difference between the
reconstructed and the ideal phase-space functions (relative to
the ideal one) and it empirically follows a log-normal distribu-
tion. The mean of the reconstruction error empirically scales
as N−1/2

r and vanishes as the number Nr of measurements
increases.

Obviously, Result 4 describes only one of many measure-
ment strategies that can be envisioned by starting from Result
3. In particular, Result 4 uses an equiangular grid and results
in a concentration of sampling points at the poles. More
isotropic measurement strategies can rely on, e.g., Lebedev
grids [104–106]. A more detailed and thorough discussion of
suitable measurement strategies is left to future research. In
the remaining parts of Sec. IV, we discuss certain drawbacks
of combining a tomography with a spherical convolution as
well as various connections to related work. Finally, we close
this section with a discussion in Sec. IV G.
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FIG. 8. Similar as in Fig. 7, the relative reconstruction errors are given here, however, for the full phase-space function as relative L2 errors
(and not only for a single phase-space point). The directly reconstructed phase-space functions for the green histograms on the diagonal are
usually preferable to the red, off-diagonal histograms that are obtained from the green ones by applying an additional spherical convolution
(see Result 2).

D. Drawbacks of combining a tomography
with a spherical convolution

A reduced number Nr of Stern-Gerlach repetitions might
lead to a substantial error when one transforms a recon-
structed phase-space function to a different member of the s-
parametrized class of phase-space functions using a spherical
convolution (see Result 2). Figure 7 details this effect for
simulated full tomographies (see Sec. IV C) of P, W , and Q
functions evaluated at the phase-space point (θ, φ) = (0, 0).
The stated relative errors are given by the difference between
the simulated full reconstruction and the ideal phase-space
function (relative to the global maximum of the ideal one).
First, Result 4 is used for a full tomography of Nρ = 2200
random spin-5/2 states, where Nr = 1000 Stern-Gerlach rep-
etitions are considered. This results in the green histograms
on the diagonal of Fig. 7. Second, the reconstructed complete
phase-space functions are transformed to P, W , and Q func-
tions by applying Result 2. One obtains the red, off-diagonal
histograms in Fig. 7.

Similarly, Fig. 8 considers the full tomography (see
Sec. IV C) and shows simulated histograms for the relative
L2-norm errors between the ideal and the reconstructed phase-
space functions (relative to the L2 norm of the ideal one). The
red, off-diagonal parts for both Figs. 7 and 8 highlight that
one should usually avoid an indirect approach that combines
a tomography with a spherical convolution from Result 2, at
least for a reduced number Nr of Stern-Gerlach repetitions.
A direct tomography of the desired class of s-parametrized
phase-space function using Result 3 or Result 4 is

preferable. This highlights that not all reconstruction strate-
gies are equally advisable under significant errors, even
though the transformations in Result 2 are reversible if one
neglects errors. We have limited our discussion to errors
which are a consequence of having only a finite number of
Stern-Gerlach repetitions at each phase-space point.

E. Related experimental work

Similar tomography approaches for the reconstruction of
phase-space functions that emphasize rotational symmetries
of finite-dimensional quantum systems and rely on rotated
parity operators (as in Result 3) have been experimentally
validated in the literature [63,107,108]. In [63], Stern-Gerlach
measurements have been performed in order to determine the
probabilities of finding a quantum system in rotated basis
states, and this allowed them to experimentally recover a
particular type of a multispin phase-space function that arises
from products of single-spin phase-space functions (refer to
[62] as discussed in Sec. III A). The nuclear magnetic res-
onance experiments in [107] did not rely on Stern-Gerlach
measurements, but directly measured the overlaps between
the mixed quantum state and rotated axial tensor operators,
where generalized multispin Wigner functions [80] have been
experimentally reconstructed without first recovering the den-
sity matrix. The approach of [107] has been recently also
applied to the experimental reconstruction of propagators and
quantum gates [108]. These experiments highlight the conve-
nience of incorporating rotations directly in the tomography
scheme as we have done in Result 3 for the whole class
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FIG. 9. (a), (b) Stern-Gerlach reconstruction weights [MR
0 ]mm in Eq. (13) for the Radon transform of a Wigner function applicable to a single

spin J (see Fig. 3). (c), (d) Wigner function (see Fig. 5), its Radon transform, and its point-symmetric part reconstructed by inverse Radon
transformation. (c) Quantum state of a single spin with J = 5/2 corresponding to the GHZ state of 2J qubits [see Fig. 5(a)]. (d) Squeezed
state |sq〉 of a single spin with J = 10 [see Fig. 5(b)] approximately localized on the upper hemisphere of its Wigner function W|sq〉; the
corresponding Radon transform R|sq〉 is highly localized around the equator and can be reconstructed using few measurements. Red (dark gray)
and green (light gray) represent positive and negative values, respectively.

of s-parametrized phase-space functions, which includes the
Glauber P, Wigner, and Husimi Q function.

Let us also compare our work to the “filtered backpro-
jection” technique in Sec. 2 of [30] (which differs from the
spherical Radon approach in Sec. IV F also discussed in [30]).
It relies on the experiments in [29] and recovers a Wigner
function from a finite number N of Stern-Gerlach measure-
ments (each performed in a rotated reference frame �n): The
Wigner functions W|mn〉 of the projection eigenstates |mn〉 are
inversely rotated and summed up as

∑N
n=1 cn R−1(�n)[W|mn〉].

A subsequent spherical convolution with a filter function
reconstructs the Wigner function in [30], which in the limit of
infinite and evenly distributed measurements agrees with the
general Result 3. In addition, Result 3 does not rely on a spher-
ical convolution and enables diverse reconstruction strategies
as the distribution function Fρ (�, s) can be independently
determined for each phase-space point �.

Our comparison to related experimental work clearly
shows the feasibility of our tomography scheme and the
use of rotated parity operators appropriately reflects the ro-
tational symmetries of finite-dimensional quantum systems.
Consequently, we believe that our tomography scheme will
be beneficial for a large class of experimental scenarios.

F. Comparison to the spherical Radon approach

We also relate Result 3 to optical homodyne tomogra-
phy [43,44,109] [see Eq. (6.12) in [57]] and especially to
the finite-dimensional case as discussed in [30]. The planar
Radon transformation of a Wigner function is replaced in
finite dimensions with the spherical Radon transformation,
which is the integral along the great circle orthogonal to

the vector pointing to a phase-space point � [89]. Refer to
Fig. 9 for plots of the Radon transforms R|GHZ〉 and R|sq〉 of
Wigner functions for a GHZ state and a squeezed state, re-
spectively. The Radon transforms of Wigner functions can be
directly obtained from the Stern-Gerlach probabilities pm(�)
by replacing the weights in Eq. (12) with the relevant parity
operators [MR

0 ]mm [see Figs. 9(a) and 9(b)]. One has

MR
s :=

2J∑
j=0

√
2 j + 1

4π
Pj (0)(γ j )

−s T j0 (13)

for general s-parametrized phase-space representations where
the Legendre polynomial Pj (0) [89] is used. The point-
symmetric parts W̃|GHZ〉 and W̃|sq〉 of the Wigner functions are
recovered via an inverse spherical Radon transform [right of
Figs. 9(c) and 9(d)]. In general, one does, however, not recover
the complete Wigner function using this approach [compare,
e.g., the left and right part of Fig. 9(c)]. But in typical
experiments with large J , the Wigner function is localized
around the north pole and measuring probabilities pm(�)
close to the equator still allows for its reconstruction from its
Radon transform [middle of Fig. 9(d)] by assuming a point-
symmetric Wigner function [right of Fig. 9(d)], which—in
this particular case—still contains the full information of the
quantum state (see Sec. 3 in [30]). The great-circle integrals
for the spherical Radon transform converge to the usual line
integrals of the planar Radon transformation.

One concludes that the spherical Radon approach is not
suitable to recover general states of a finite-dimensional
quantum system due to essential geometric limitations of the
spherical Radon transform. This clarifies that not all infinite-
dimensional tomography schemes (as the Radon approach
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[43,44,57,109]) lead to unproblematic approaches when re-
stricted to finite dimensions.

G. Other aspects and discussion

As for infinite-dimensional phase-space methods [see
Eq. (6.8) in [7]], one can also use our approach to reconstruct
the density matrix (which, however, is not the subject of this
paper)

ρ =
∫

S2
Fρ (�, s) R(�)M−sR†(�) d�, (14)

from its phase-space representation by inverting Result 1 with
a spherical integration. Note that the reconstruction from the
Q function is more precarious as M1 diverges for large J . A
tomography formula

ρ =
J∑

m=−J

[Ms]mm

∫
S2

pm(�) R(�)M−sR†(�) d� (15)

in terms of the Stern-Gerlach probabilities pm(�) is obtained
by combining Eqs. (12) and (14), where the integrals can
be numerically estimated from finitely many spherical sam-
ples via, e.g., Gaussian quadratures [90]. This generalizes
[101,110,111], and the filtered backprojection technique for
the density matrix [see Eq. (9) in [30]] agrees in the limit of
infinite measurements with Eq. (15).

While a majority of earlier work focuses on reconstructing
density matrices or infinite-dimensional phase-space func-
tions from measured data (see, e.g., [109,112–118]), we have
presented in Eq. (12) of Result 3 a general tomography
formula for finite-dimensional phase-space representations.
Significantly, we report this tomography formula for the full
class of all (finite-dimensional) s-parametrized phase-space
representations. Result 3 provides the foundation for engineer-
ing statistical estimators [119] for the reconstruction of finite-
dimensional phase-space representations in future research,
which minimize the necessary Stern-Gerlach measurements
while guaranteeing robustness via precisely bounded confi-
dence intervals and ensuring a physical estimate. And Result
4 provides a first step in this direction.

For designing better statistical estimators, the characteriza-
tion of the type and relative size of specific systematic and ran-
dom errors involved in a given experimental realization would
be necessary and choosing a statistical estimator closely de-
pends on assumptions made in a concrete experiment. Given
a formula [as Eq. (12)] to compute a desired target, one can
use point estimators (such as maximum likelihood estimators)
or set estimators [119] to determine a target which “best” fits
to the measured data.

The analysis in Sec. IV F shows that not all formulas used
in the literature produce the desired results, even before taking
into account any statistical approach. We have along these
lines focused in this paper on the aspect of finding suitable
tomography formulas, especially since related related experi-
mental work has validated similar tomography approaches re-
lying on rotated parity operators (see Sec. IV E) and the statis-
tical aspects are quite similar to the widely discussed cases of
reconstructing density matrices or infinite-dimensional phase-
space functions [109,112–118]. In Secs. IV A–IV C, we have
discussed the reconstruction errors that arise from having only

a finite number Nr of Stern-Gerlach repetitions (i.e., shot
noise). The resulting errors are illustrated in Fig. 6 and they
behave as expected. The errors decrease as the number Nr

of repetitions increases. Beyond this first analysis, a more
detailed discussion of statistical and robustness questions is
left to future work. We want to only remark that reconstructing
a Wigner function directly using Result 3 or Result 4 is—
under noise—preferable to convolving or deconvolving noisy
P or Q functions via Result 2 as convolutions are well known
to be sensitive to noise (see [48,57]). This claim is also
substantiated by simulations of Stern-Gerlach tomographies
in Sec. IV D where the corresponding reconstruction errors are
also determined. Therefore, not all reconstruction strategies
are equally advisable under experimental noise as detailed in
Figs. 7 and 8. Concrete experiments will have to be explicitly
designed depending on characteristics of the desired final
(phase-space) representation.

V. CONCLUSION

We have developed a unified formalism for spherical
phase-space representations of finite-dimensional quantum
states based on rotated parity operators. The rotated parity
operators appropriately reflect the rotational symmetries of
finite-dimensional quantum systems and the Stern-Gerlach
frequencies (or related overlaps) from Eq. (11) are easily
measured in experiments (see Sec. IV E). In addition, all
of our results apply to the full class of (finite-dimensional)
s-parametrized phase-space representations.

(a) We have systematically defined spherical phase spaces
for spin systems which recover the planar phase spaces from
quantum optics in the large-spin limit.

(b) Different types of phase-space representations can be
translated into each other by convolving with spin-up state
representations.

(c) Tomographic approaches can be now formulated con-
sistently for all (finite-dimensional) s-parametrized phase-
space representations.

(d) The spherical Radon approach is not suitable to recover
general states of finite-dimensional quantum systems.

Our results pave the way for innovative tomography
schemes to reconstruct phase-space functions of finite-
dimensional quantum states.
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