000885584 001__ 885584 000885584 005__ 20210130010439.0 000885584 0247_ $$2doi$$a10.1080/00268976.2020.1763490 000885584 0247_ $$2ISSN$$a0026-8976 000885584 0247_ $$2ISSN$$a1362-3028 000885584 0247_ $$2Handle$$a2128/26222 000885584 0247_ $$2WOS$$aWOS:000545166600001 000885584 037__ $$aFZJ-2020-03948 000885584 041__ $$aEnglish 000885584 082__ $$a530 000885584 1001_ $$0P:(DE-HGF)0$$aBejenke, Isabel$$b0 000885584 245__ $$aCross-polarisation ENDOR for spin-1 deuterium nuclei 000885584 260__ $$aLondon$$bTaylor & Francis$$c2020 000885584 3367_ $$2DRIVER$$aarticle 000885584 3367_ $$2DataCite$$aOutput Types/Journal article 000885584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605792363_26137 000885584 3367_ $$2BibTeX$$aARTICLE 000885584 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000885584 3367_ $$00$$2EndNote$$aJournal Article 000885584 520__ $$aEfficient transfer of spin polarisation from electron to nuclear spins is emerging as a common target of several advanced spectroscopic experiments, ranging from sensitivity enhancement in nuclear magnetic resonance (NMR) and methods for the detection of single molecules based on optically detected magnetic resonance (ODMR) to hyperfine spectroscopy. Here, we examine the feasibility of electron-nuclear cross-polarisation at a modified Hartmann-Hahn condition (called eNCP) for applications in ENDOR experiments with spin-1 deuterium nuclei, which are important targets in studies of hydrogen bonds in biological systems and materials. We have investigated a two-spin model system of deuterated malonic acid radicals in a single crystal. Energy matching conditions as well as ENDOR signal intensities were determined for a spin Hamiltonian under the effect of microwave and radiofrequency irradiation. The results were compared with numerical simulations and 94-GHz ENDOR experiments. The compelling agreement between theoretical predictions and experimental results demonstrates that spin density operator formalism in conjunction with suitable approximations in regard to spin relaxation provides a satisfactory description of the polarisation transfer effect. The results establish a basis for future numerical optimizations of polarisation transfer experiments using multiple-pulse sequences or shaped pulses and for moving from model systems to real applications in disordered systems. 000885584 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0 000885584 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x1 000885584 536__ $$0G:(EU-Grant)817482$$aPASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482)$$c817482$$fH2020-FETFLAG-2018-03$$x2 000885584 588__ $$aDataset connected to CrossRef 000885584 7001_ $$0P:(DE-Juel1)178647$$aZeier, Robert$$b1$$ufzj 000885584 7001_ $$0P:(DE-HGF)0$$aRizzato, Roberto$$b2 000885584 7001_ $$0P:(DE-HGF)0$$aGlaser, Steffen J.$$b3 000885584 7001_ $$0P:(DE-HGF)0$$aBennati, Marina$$b4$$eCorresponding author 000885584 773__ $$0PERI:(DE-600)1491083-4$$a10.1080/00268976.2020.1763490$$gVol. 118, no. 18, p. e1763490 -$$n18$$pe1763490 -$$tMolecular physics$$v118$$x1362-3028$$y2020 000885584 8564_ $$uhttps://juser.fz-juelich.de/record/885584/files/Cross%20polarisation%20ENDOR%20for%20spin%201%20deuterium%20nuclei.pdf$$yOpenAccess 000885584 8564_ $$uhttps://juser.fz-juelich.de/record/885584/files/Cross%20polarisation%20ENDOR%20for%20spin%201%20deuterium%20nuclei.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000885584 909CO $$ooai:juser.fz-juelich.de:885584$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000885584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178647$$aForschungszentrum Jülich$$b1$$kFZJ 000885584 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000885584 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x1 000885584 9141_ $$y2020 000885584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17 000885584 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000885584 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL PHYS : 2018$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000885584 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17 000885584 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-17$$wger 000885584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17 000885584 920__ $$lno 000885584 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0 000885584 980__ $$ajournal 000885584 980__ $$aVDB 000885584 980__ $$aUNRESTRICTED 000885584 980__ $$aI:(DE-Juel1)PGI-8-20190808 000885584 9801_ $$aFullTexts