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Adhesion interactions mediated by multiple bond types are relevant for many biological and
soft matter systems, including the adhesion of biological cells and functionalized colloidal particles
to various substrates. To elucidate advantages and disadvantages of multiple bond populations
for the stability of heterogeneous adhesion clusters of receptor-ligand pairs, a theoretical model
for a homogeneous parallel adhesion bond cluster under constant loading is extended to several
bond types. The stability of the entire cluster can be tuned by changing densities of different
bond populations as well as their extensional rigidity and binding properties. In particular, bond
extensional rigidities determine the distribution of total load to be shared between different sub-
populations. Under a gradual increase of the total load, the rupture of a heterogeneous adhesion
cluster can be thought of as a multistep discrete process, in which one of the bond sub-populations
ruptures first, followed by similar rupture steps of other sub-populations or by immediate detachment
of the remaining cluster. This rupture behavior is qualitatively independent of involved bond types,
such as slip and catch bonds. Interestingly, an optimal stability is generally achieved when the total
cluster load is shared such that loads on distinct bond populations are equal to their individual
critical rupture forces. We also show that cluster heterogeneity can drastically affect cluster lifetime.

I. INTRODUCTION

Adhesion interactions via receptor-ligand bonds are es-
sential for many biological and soft matter systems. Ex-
amples include cell adhesion [1–4] and migration [5, 6],
synapse formation [7, 8], adhesion of lipid vesicles [9–11]
and drug-delivery carriers [12, 13] to a substrate. Such
adhesive interactions depend on the properties of recep-
tors and ligands (e.g. density, kinetic rates, mobility) and
the characteristics of adhered particles (e.g. size, shape,
deformability). For instance, binding/dissociation rates
of receptors and their mobility together with membrane
constraints strongly affect the formation of immunologi-
cal synapse characterized by a highly organized pattern
of receptor proteins [8, 14]. In addition to bond rates
and mobility, membrane/substrate deformation and ap-
plied stresses play an important role in the nucleation
of bond domains [15] and their growth and distribution
[10, 16–18].

Bond-mediated adhesion interactions often involve
more than one type of receptor-ligand pairs with dis-
tinct intrinsic properties. For instance, leukocytes be-
fore extravasation first bind to and roll at an endothelial
cell layer, then show a firm adhesion at the surface [19–
21]. This process is facilitated by the ability of P-selectin
glycoprotein (PSGL-1) at the surface of leukocytes to
bind to both selectin and integrin molecules expressed
at endothelial cells. Another example is the adhesion of
malaria-infected red blood cells to the endothelium, in
order to avoid their removal in the spleen [22–24]. Here,
Plasmodium falciparum erythrocyte membrane receptor
(PfEMP-1) can bind to multiple ligands (e.g. CD36,
ICAM-1, and CSA molecules) at the surface of endothe-
lial cells [25–27]. Even though it is hypothesized that
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they act synergistically [28], the exact roles of different
receptor-ligand pairs remain largely unknown.

Biological cells often interact with a substrate through
a number of localized adhesion sites called focal adhe-
sions [3], which can be thought of as localized clusters of
adhesive bonds under applied stress. Similarly, leukocyte
adhesion can be approximated through adhesive interac-
tions of several discrete clusters, since PSGL-1 proteins
are primarily located at the cell’s microvilli tips [29]. Fur-
thermore, PfEMP-1 receptors are positioned at cytoad-
herent knobs, representing discrete adhesion clusters on
the surface of malaria-infected erythrocytes [30]. The
first simple theoretical model for local adhesion clusters
with a single bond population was proposed by Bell [31],
who used a mean-field approach to describe the stabil-
ity of a parallel adhesion-bond cluster of fixed size under
constant loading. Later, the original model has been ex-
tended to dynamic loading [32, 33] and generalized to a
stochastic model for parallel bond clusters [34–36], which
shows that the cluster lifetime is always finite and in-
creases exponentially with the number of bonds within
the cluster. Note that these models are applicable to
local adhesion clusters with a fixed number of adhesive
sites (i.e. without receptor mobility). Furthermore, they
can be used to quantify the adhesion of functionalized
rigid particles used in self-assembled functional materi-
als [37, 38] or for drug delivery [12, 13].

In the theoretical model for a homogeneous adhesion
bond cluster, each bond can form with a constant on-rate
κon and rupture with an off-rate κoff(F ) which depends
on the applied force F . Note that the ratio κon/κoff rep-
resents a Boltzmann factor related to the energy change
due to bond formation, and therefore, it characterizes
binding strength. The original model by Bell [31] con-
sidered a so-called slip bond with κoff = κ0 exp (F/fd),
where κ0 is the unstressed off-rate and and fd is a char-
acteristic force scale (typically a few pN), such that the
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FIG. 1. Heterogeneous parallel bond cluster with two differ-
ent bond populations indicated by blue and red colors. γ1
and γ2 are rebinding rates of the 1st and 2nd bond types, re-
spectively. Similarly, k1 and k2 are the corresponding spring
rigidities. κ0 is a reference off-rate whose inverse 1/κ0 sets a
basic timescale.

bond lifetime decreases with increasing F [39]. Some
biological bonds may behave differently, so-called catch

bonds, such that their lifetime increases first with in-
creasing F until a certain threshold, and then decreases
with increasing F similar to a slip bond. The catch-
bond behavior was first predicted theoretically [40] and
later discovered for leukocytes experimentally [41]. The
parallel bond-cluster model for slip bonds has also been
adapted to the case of catch bonds [42, 43].

In this article, we extend the homogeneous parallel-
bond-cluster model to multiple bond populations and
show that the stability and lifetime of a heterogeneous
cluster can be tuned by changing the fractions of differ-
ent bond populations and their extensional rigidity and
binding properties. We use both stochastic simulations
and the mean-field approach to construct critical rupture-
force diagrams for a number of relevant parameters. Un-
der a gradual increase of the applied load, the dissociation
of a heterogeneous bond cluster can well be described
by a multistep discrete process, which starts with the
rupture of one of the bond sub-populations and contin-
ues with similar rupture steps of other sub-populations
or shows a sudden detachment of the remaining cluster.
This cluster-dissociation behavior is qualitatively inde-
pendent of involved bond types, including slip and catch
bond sub-clusters. To maximize the critical rupture force
of a heterogeneous cluster for fixed bond kinetics and
sub-cluster fractions, the distribution of loads on distinct
bond sub-clusters has to be such that individual loads on
the sub-clusters are equal to their critical rupture forces.
The load balance within a heterogeneous cluster is con-
trolled by the ratio of bond extensional rigidities. Our
results show that a strong load disbalance (i.e. major-
ity of the total force is applied on a single sub-cluster)
is generally disadvantageous for overall cluster stability,
because the bond sub-cluster carrying the load majority
quickly ruptures without significant stability enhance-

ment. Finally, we employ master equation to compute
the lifetime of heterogeneous clusters for various param-
eters, and show that the heterogeneity can drastically
affect cluster lifetime.

II. METHODS AND MODELS

A. Parallel bond cluster model

We start with the original model for parallel slip-bond
cluster under a constant loading [31, 34]. The system
contains Nt adhesion sites, where N(τ) ≤ Nt (τ is time)
bonds or bound springs with an extensional rigidity k and
a dimensionless rebinding rate γ = κon/κ0 can stochasti-
cally form under an external force F . From the stability
analysis [31], with the assumption that each spring shares
the same force F/N , there exists a critical force f c below
which the cluster equilibrates to an average number of
bonds 〈N〉 and above which the cluster is unstable and
dissociates, i.e. N = 0. The critical force f c and the crit-
ical number Nc of springs for slip-bond cluster are given
by [31, 35]

f c

fd
= Nt pln(γ/e), Nc = Nt pln(γ/e)

1 + pln(γ/e)
, (1)

where pln(a) is the product logarithm function which
solves the equation x ex = a.

We generalize this model to a heterogeneous cluster
with two different bond populations, characterized by the
extensional rigidities k1 and k2 and the rebinding rates
γ1 = κon

1 /κ0 and γ2 = κon
2 /κ0, see Fig. 1. Despite the

fact that unstressed off-rates of distinct slip-bond popu-
lations can be different, the rebinding rates γ1 and γ2 are
defined here using a reference κ0 off-rate, whose inverse
1/κ0 sets the basic timescale in the system. The total
number Nt of adhesion sites is assumed to be constant,
and ρ determines a fraction of type-1 adhesion sites, such
that Nt

1 = ρNt and Nt
2 = (1 − ρ)Nt. We also define

a spring-rigidity ratio kr = k1/k2 and a rebinding ratio
γr = γ1/γ2. At any time τ = tκ0, the applied force is

F = N1k1∆x+N2k2∆x = (N1k
r +N2) k2∆x, (2)

where ∆x is the extension of bound springs. f1 and f2
are the forces acting on the corresponding populations of
bond types 1 and 2, given by

f1 =
N1Fkr

N1kr +N2
, f2 =

N2F

N1kr +N2
, (3)

such that f1 + f2 = F . Clearly, kr directly controls the
distribution of forces between the two bond populations.
For the case of γr = 1 and kr = 1, the heterogeneous clus-
ter becomes identical to the homogeneous bond cluster
considered previously.
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four rate equations, two for each type of bonds, repre-
senting their association and dissociation as

O1
κon

1−−→ C1, (10)

C1
κoff

1−−→ O1, (11)

O2
κon

2−−→ C2, (12)

C2
κoff

2−−→ O2, (13)

where O denotes an open state and C a closed state.
Here, κon

1 , κoff
1 , κon

2 , and κoff
2 are the reaction rates.

The algorithm follows by generating two independent
random numbers ξ1 and ξ2 that are uniformly distributed
at the interval [0, 1]. Then, ξ1 is employed to define the
time dτ at which next reaction occurs, while ξ2 is used to
choose which reaction occurs next. The time dτ is given
by

dτ =
1

α
log

(

1

ξ1

)

, (14)

where α = α1 +α2 +α3 +α4 is the combined propensity
function with separate propensity functions

α1 = γ1 (N
t
1 −N1), (15)

α2 = N1 κ
off
1 (f1/N1)/κ

0, (16)

α3 = γ2 (N
t
2 −N2), (17)

α4 = N2 κ
off
2 (f2/N2)/κ

0. (18)

For ξ2 ∈ [0, α1/α) the first reaction [Eq. (10)], for ξ2 ∈
[α1/α, (α1 + α2)/α) the second reaction [Eq. (11)], for
ξ2 ∈ [(α1 + α2)/α, (α1 + α2 + α3)/α) the third reaction
[Eq. (12)], and for ξ2 ∈ [(α1 + α2 + α3)/α, 1] the fourth
reaction [Eq. (13)] is chosen, respectively. Following this
algorithm, N1(τ) and N2(τ) are advanced in time until
the entire cluster detaches (i.e. N1 = 0 and N2 = 0) or
when a pre-defined maximum number of simulation steps
is reached.

III. RESULTS

We first consider a heterogeneous cluster with two slip-
bond populations denoted as slip-slip bond cluster. For
simplicity, we assume κ0

1 = κ0
2 = κ0. Figure 2(a) shows

typical evolution of N(τ) = N1(τ)+N2(τ) for several slip-
slip bond clusters with various kr and γr, where F = 50,
ρ = 0.3, Nt = 200. The case of kr = 1 and γr = 1 cor-
responds to a homogeneous cluster for which f c ≃ 55.7.
Even though F < f c, the stochastic trajectory (red line)
shows a complete cluster dissociation due to fluctuations
in N and the condition of N(τ) = 0 for simulation ter-
mination. Note that cluster dissociation occurs more fre-
quently when the applied force is approaching f c. The
corresponding solution of deterministic Eqs. (4) and (5)
shown by the black line converges to a constant N for

large τ . For kr = 1 and γr = 5 (blue line), the cluster is
very stable because the critical force is much larger than
F = 50, which is evident from Fig. 2(b), where the av-
erage number 〈N〉 of bonds is presented as a function of
F for different γr and kr. In contrast, the cluster with
kr = 5 and γr = 1 quickly dissociates at F = 50, as it
significantly exceeds the critical force. The differences in
〈N〉 between stochastic simulations (symbols) and deter-
ministic solutions (lines), as F approaches f c in Fig. 2(b),
characterize the fraction of simulations where cluster dis-
sociation has occurred within the total simulation time.
Note that the cluster lifetime is always finite, but it can
be much larger than the total time of stochastic simula-
tions when the applied force is considerably smaller than
f c.

A. Critical force and stability enhancement

Dissociation of a heterogeneous cluster can be thought
of as a multistep process. For two bond populations, as
the applied force F is increased, one of the sub-clusters
dissociates first, followed by the detachment of the other.
Thus, depending on how F is shared between two sub-
clusters which is controlled by kr [see Eq. (3)], there exist
two possibilities

(i) f1 = f c
1 , N1 = Nc

1 & f2 ≤ f c
2 , (19)

(ii) f2 = f c
2 , N2 = Nc

2 & f1 ≤ f c
1 , (20)

where f c
1 , f c

2 , Nc
1, and Nc

2 are the corresponding criti-
cal forces and numbers of bonds of the two sub-clusters
separately. In the first case, Eqs. (19) and (5) with two
unknowns F and N2 become

Nc
1Fkr

Nc
1k

r +N2
= f c

1 , (21)

((1− ρ)Nt −N2)γ2 = N2 κ
off
2 (f2/N2)/κ

0, (22)

from which the applied force F c required to initially dis-
sociate the first sub-cluster can be computed. In the
second case, Eqs. (20) and (4) with two unknowns F and
N1 are given by

Nc
2F

N1kr +Nc
2

= f c
2 , (23)

(ρNt −N1)γ1 = N1 κ
off
1 (f1/N1)/κ

0, (24)

from which the applied force F c required to initially dis-
sociate the second sub-cluster can be calculated numeri-
cally.

After one of the sub-clusters has initially dissociated
under the force F c, the other sub-cluster can immediately
rupture, if F c is larger than or equal to its individual
critical force, or detachment of the remaining sub-cluster
requires a force that is larger than F c. This condition
can be taken into account through the requirement that
the critical force f c for rupturing the entire cluster must
necessarily satisfy f c ≥ f c,m

1,2 = max(f c
1 , f

c
2). Thus, we

obtain f c = F c if F c ≥ f c,m
1,2 , and f c = f c,m

1,2 otherwise.
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for a given γr and ρ. The optimal load distribution is
achieved when the individual loads on different bond sub-
clusters are equal to their corresponding critical forces,
such that all sub-clusters rupture at the same time. This
means that the maximum possible rupture force of the
whole cluster is simply fmax =

∑m
i f c

i , where m is the
number of different bond populations. Thus, for fixed
critical forces of bond sub-clusters, we can define a range
of possible critical forces of a heterogeneous cluster as
f c,m ≤ f c ≤ fmax where f c,m = maxmi (f c

i ) is the maxi-
mum of critical forces of all bond sub-clusters. The load
distribution at kropt leads to f c = fmax, while kr → 0 or
kr → ∞ results in f c → f c,m. Therefore, a strong load
disbalance (kr ≪ 1 or kr ≫ 1) has generally no advan-
tages for overall cluster stability, because one of the bond
populations carries the majority of the load and gets eas-
ily ruptured without significant stability enhancement.

The upper bound on possible critical forces of a hetero-
geneous cluster discussed above provides an intuitive ex-
planation for the maximum stability enhancement χmax

by a weaker sub-cluster. Starting from a first bond sub-
cluster with its critical rupture force f c

1 , we add the sec-
ond bond population that is weaker than the first pop-
ulation, i.e. f c

2 ≤ f c
1 . To maximize fmax = f c

1 + f c
2 of

the whole cluster, we select f c
2 = f c

1 , so that fmax =
2f c

1 = 2f c
2 and χmax = 2 for the cluster with two bond

populations. In other words, the addition of a second
bond population that is weaker than the first population
can at most double the critical rupture force of the whole
cluster. Clearly, this argument can be generalized to m
bond sub-populations, such that 1 ≤ χ ≤ χmax where
χmax = m. Note that such a maximum in χ may not
easily be achieved in biological systems, as it requires si-
multaneous regulation of multiple parameters, including
intrinsic properties and densities of different bond popu-
lations.

In addition to γr and kr for controlling f c of a heteroge-
neous cluster, the fraction ρ of different bond populations
can be tuned to alter the critical force and lifetime of the
cluster. Interestingly, kropt for a slip-slip bond cluster in
Eq. (26) is independent of ρ, while the position of χmax

with respect to γr is strongly affected by ρ. Note that
the ability to adjust density fractions of different bond
populations has direct biological relevance as cells can
regulate receptor density, while γr and kr are intrinsic
properties of bond populations within the cluster.

Finally, it is important to discuss limitations of the
presented theoretical model. This model is obviously too
simple to quantitatively describe whole-cell adhesion, as
it does not consider cell deformation and possible recep-
tor and ligand mobilities. In such cases, more sophisti-
cated models or simulations need to be applied, as it has
been done for modeling immunological synapse [8, 14] or
the distribution and dynamic growth of different bond
domains [10, 16–18]. The presented model considers het-
erogeneous bond clusters in which receptor densities and
population fractions are nearly conserved over time. We
expect that this model is applicable to highly localized

focal adhesion sites in order to characterize their adhe-
sion stability. As an example, it can be applied to bond
clusters located at the villi of leukocytes [29] or at the ad-
hesive knobs of malaria-infected erythrocytes [30]. Fur-
thermore, it is useful to estimate adhesion stability of
functionalized colloidal particles used in functional ma-
terials [37, 38] or for drug delivery by micro- and nano-
carriers [12, 13]. Note that the application of this model
to such systems requires some knowledge about involved
receptor-ligand pairs, including bond kinetics and densi-
ties. Thus, the presented model can be used for the quan-
tification of local cluster-adhesion measurements and bet-
ter understanding of the role of different bond popula-
tions within heterogeneous adhesion clusters.
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Appendix A: Optimal fraction ρ and maximum

stability enhancement

For a fixed γr, the optimal fraction ρopt of the first
bond population of a slip-slip bond cluster, such that the
maximum stability enhancement χmax lies exactly at γr,
can be found from the equality f c

1 = f c
2 as

ρNt pln(γ′

1/e) = (1− ρ)Nt pln(γ′

2/e)

⇒ρopt =
pln(γ′

2/e)

pln(γ′

1/e) + pln(γ′

2/e)
. (A1)

Here, we can also compute γr
opt corresponding to χmax

for a fixed ρ.

The value of χmax for a slip-slip bond cluster can be
found analytically as follows. For simplicity, we assume
that κ0

1 = κ0
2 = κ0, so that γ′

1 = γ1 and γ′

2 = γ2. First
of all, χmax lies at the kropt line, as kropt represents kr

values that correspond to the maximum f c for fixed γr

and f c,m
1,2 is independent of kr. Therefore, we restrict

further analysis of χ to the kropt line, on which f1 = f c
1 ,

N1 = Nc
1, f2 = f c

2 , and N2 = Nc
2.

For γr < γr
opt, f

c
1 < f c

2 which implies that

χ
(

γr < γr
opt

)

=
f c

f c,m
1,2

=
f c

f c
2

=
Nc

1k
r
opt +Nc

2

Nc
2

= 1 +
ρ

1− ρ

pln(γ1/e)

pln(γ2/e)
. (A2)

Note that χ
(

γr < γr
opt

)

is a monotonically increasing
function of γ1 = γrγ2 or γr. For γr > γr

opt, f c
1 > f c

2 ,
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leading to

χ
(

γr > γr
opt

)

=
f c

f c,m
1,2

=
f c

f c
1

=
Nc

1k
r
opt +Nc

2

Nc
1k

r
opt

= 1 +
1− ρ

ρ

pln(γ2/e)

pln(γ1/e)
. (A3)

χ
(

γr > γr
opt

)

is a monotonically decreasing function of
γr. The monotonic behavior of χ along the kropt line for
these two cases of γr proves that χmax is achieved exactly
at the γr

opt value, where f c
1 = f c

2 . Then, if we plug the
expression for ρopt from Eq. (A1) into Eq. (A2) or (A3),
we obtain that

χmax = 2 (A4)

for a slip-slip bond cluster with two bond populations.

To generalize the result for a slip-slip bond cluster with
two distinct populations, a cluster with three different
slip bond populations is considered. For simplicity, we
assume that κ0

1 = κ0
2 = κ0

3 = κ0, so that γ′

1 = γ1, γ
′

2 = γ2,
and γ′

3 = γ3. In the mean-field description, the average
number of bonds is determined by

dN1

dτ
= −N1 e

f1/(N1f
d

1
) + (Nt

1 −N1)γ1, (A5)

dN2

dτ
= −N2 e

f2/(N2f
d

2
) + (Nt

2 −N2)γ2, (A6)

dN3

dτ
= −N3 e

f3/(N3f
d

3
) + (Nt

3 −N3)γ3, (A7)

where Nt
1+Nt

2+Nt
3 = Nt. Similarly to the case with two

sub-clusters, the force balance results in

f1 =
N1k

r
1F

N1kr1 +N2kr2 +N3
, (A8)

f2 =
N2k

r
2F

N1kr1 +N2kr2 +N3
, (A9)

f3 =
N3F

N1kr1 +N2kr2 +N3
, (A10)

where kr1 = k1/k3 and kr2 = k2/k3. Similarly, we define
γr
1 = γ1/γ3 and γr

2 = γ2/γ3. Then, the point where f c
1 =

f c
2 = f c

3 = f1 = f2 = f3 is considered, as it corresponds
to χmax, which can be shown by arguments similar to
those for a cluster with two bond populations. Fractions
of the three populations are 1−ρ2−ρ3, ρ2, and ρ3, where
ρ2 + ρ3 ≤ 1.

Then, χmax = f c/max(f c
1 , f

c
2 , f

c
3) = f c/f c

3 is calcu-
lated as

χmax = 1 +
Nc

1k
r
opt1

Nc
3

+
Nc

2k
r
opt2

Nc
3

(A11)

= 1 +
1− ρopt2 − ρopt3

ρopt3

pln(γ1/e)

pln(γ3/e)
+

ρopt2
ρopt3

pln(γ2/e)

pln(γ3/e)
,

where

kropt1
=

1 + pln(γ1/e)

1 + pln(γ3/e)
, kropt2

=
1 + pln(γ2/e)

1 + pln(γ3/e)
,

ρopt2 =
pln(γ1/e)pln(γ3/e)

f(γ1, γ2, γ3)
,

ρopt3 =
pln(γ1/e)pln(γ2/e)

f(γ1, γ2, γ3)
,

and f(γ1, γ2, γ3) = pln(γ1/e)pln(γ2/e) +
pln(γ1/e)pln(γ3/e) + pln(γ2/e)pln(γ3/e). By plug-
ging ρopt2 and ρopt3 into Eq. (A11), we obtain that

χmax = 3 (A12)

for a slip-slip bond cluster with three different bond pop-
ulations. This argument can be extended to m different
sub-populations sharing the same load, whose maximum
stability enhancement is equal to m.
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