000885609 001__ 885609
000885609 005__ 20240313103121.0
000885609 0247_ $$2Handle$$a2128/25878
000885609 037__ $$aFZJ-2020-03961
000885609 041__ $$aEnglish
000885609 1001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b0$$eCorresponding author$$ufzj
000885609 1112_ $$aConference of Computational Neuroscience 2020$$cOnline$$d2020-07-18 - 2020-07-23$$gCNS 2020$$wOnline
000885609 245__ $$aComparison of surrogate techniques for evaluation of spatio-temporal patterns in case of regular data
000885609 260__ $$c2020
000885609 3367_ $$033$$2EndNote$$aConference Paper
000885609 3367_ $$2BibTeX$$aINPROCEEDINGS
000885609 3367_ $$2DRIVER$$aconferenceObject
000885609 3367_ $$2ORCID$$aCONFERENCE_POSTER
000885609 3367_ $$2DataCite$$aOutput Types/Conference Poster
000885609 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1602677695_20595$$xAfter Call
000885609 502__ $$cRWTH Aachen
000885609 520__ $$aTo identify active cell assemblies we developed a method to detect significant spatio-temporal spike patterns (STPs). The method, called SPADE [1,2,3], identifies repeating ms-precise spike patterns across neurons. SPADE first discretizes the spike trains in exclusive bins (defining the pattern precision, e.g. 5ms) and clips the bin content to 1 if more than 1 spike is therein. Second, STPs are mined by Frequent Itemset Mining [4], and their counts are evaluated for significance through comparison to surrogate data.  The distribution of the pattern counts in the surrogate data provides p-values for determining the significance of grouped patterns. The surrogate data implement the null-hypothesis of independence, and a classical choice is to apply uniform dithering (UD) [7], i.e. independent, uniformly distributed displacement of each spike (e.g. in a range of +/- 5 times the bin width [1]). This approach does not maintain the absolute refractory period and a potentially existing ISI regularity. The binarization leads in the surrogates to a higher probability of more than 1 spike per bin, and thus by the consecutive clipping to a reduction of the spike count (up to 12%, in particular for high firing rates) as compared to the original data. This may cause false positives (cmp. [9]). Therefore, we explored further methods for surrogate generation. To not have different spike counts in the original and the surrogate data, bin-shuffling shuffles the bins after binning the original data. To keep the refractory period (RP) uniform dithering with refractory period (UD-RP) does not allow dithered spikes within a short time interval after each spike. Dithering according to the ISI distribution (ISI-D) [e.g. 7] or the Joint-ISI distribution (J-ISI-D) [5] conserves the ISI and ISI/J-ISI distributions, respectively. Spike-train shifting (ST-Shift) [6,7] moves the whole spike train, trial by trial, by a random amount, thereby only affecting the relation of spike trains to each other. Thus all of these implement different null-hypotheses, as summarized in the table below. It shows the non-/preservation (no/yes) of features in the various surrogates compared to the original data.  We applied all surrogate methods (within SPADE) and compared their results using artificial, and experimental spike data simultaneously recorded in pre-/motor cortex of a macaque monkey performing a reach-to-grasp task [8]. We find that all methods besides UD lead to very similar results in terms of number of patterns and their composition. UD results in a much larger number of patterns, in particular if neurons have very high firing rates and exhibit regular spike trains. We conclude that the reduction in the spike count using UD increases the false positive rate for spike trains with CV<1 and/or high firing rates, the other methods are much less affected, the least spike train shifting. References:[1] Torre et al (2016)  DOI: 10.1523/jneurosci.4375-15.2016[2] Quaglio et al (2017) DOI: 10.3389/fncom.2017.00041[3] Stella et al (2019) DOI: 10.1016/j.biosystems.2019.104022[4] Picado-Muiño et al (2013). DOI: 10.3389/fninf.2013.00009[5] Gerstein (2004)[6] Pipa et al (2008) DOI: 10.1007/s10827-007-0065-3[7] Louis et al (2010) DOI: 10.1007/978-1-4419-5675-0_17[8] Brochier et al (2018) DOI: 10.1038/sdata.2018.55[9] Pipa et al (2013)DOI: 10.1162/NECO_a_00432
000885609 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000885609 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x1
000885609 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000885609 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x3
000885609 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x4
000885609 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x5
000885609 7001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b1$$ufzj
000885609 7001_ $$0P:(DE-Juel1)172768$$aPalm, Günther$$b2$$ufzj
000885609 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b3$$ufzj
000885609 8564_ $$uhttps://juser.fz-juelich.de/record/885609/files/Poster.pdf$$yOpenAccess
000885609 8564_ $$uhttps://juser.fz-juelich.de/record/885609/files/Poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000885609 909CO $$ooai:juser.fz-juelich.de:885609$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000885609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b0$$kFZJ
000885609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b1$$kFZJ
000885609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172768$$aForschungszentrum Jülich$$b2$$kFZJ
000885609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b3$$kFZJ
000885609 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000885609 9141_ $$y2020
000885609 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000885609 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000885609 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000885609 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000885609 9801_ $$aFullTexts
000885609 980__ $$aposter
000885609 980__ $$aVDB
000885609 980__ $$aUNRESTRICTED
000885609 980__ $$aI:(DE-Juel1)INM-6-20090406
000885609 980__ $$aI:(DE-Juel1)IAS-6-20130828
000885609 980__ $$aI:(DE-Juel1)INM-10-20170113
000885609 981__ $$aI:(DE-Juel1)IAS-6-20130828