001     885609
005     20240313103121.0
024 7 _ |a 2128/25878
|2 Handle
037 _ _ |a FZJ-2020-03961
041 _ _ |a English
100 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Conference of Computational Neuroscience 2020
|g CNS 2020
|c Online
|d 2020-07-18 - 2020-07-23
|w Online
245 _ _ |a Comparison of surrogate techniques for evaluation of spatio-temporal patterns in case of regular data
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1602677695_20595
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a To identify active cell assemblies we developed a method to detect significant spatio-temporal spike patterns (STPs). The method, called SPADE [1,2,3], identifies repeating ms-precise spike patterns across neurons. SPADE first discretizes the spike trains in exclusive bins (defining the pattern precision, e.g. 5ms) and clips the bin content to 1 if more than 1 spike is therein. Second, STPs are mined by Frequent Itemset Mining [4], and their counts are evaluated for significance through comparison to surrogate data. The distribution of the pattern counts in the surrogate data provides p-values for determining the significance of grouped patterns. The surrogate data implement the null-hypothesis of independence, and a classical choice is to apply uniform dithering (UD) [7], i.e. independent, uniformly distributed displacement of each spike (e.g. in a range of +/- 5 times the bin width [1]). This approach does not maintain the absolute refractory period and a potentially existing ISI regularity. The binarization leads in the surrogates to a higher probability of more than 1 spike per bin, and thus by the consecutive clipping to a reduction of the spike count (up to 12%, in particular for high firing rates) as compared to the original data. This may cause false positives (cmp. [9]). Therefore, we explored further methods for surrogate generation. To not have different spike counts in the original and the surrogate data, bin-shuffling shuffles the bins after binning the original data. To keep the refractory period (RP) uniform dithering with refractory period (UD-RP) does not allow dithered spikes within a short time interval after each spike. Dithering according to the ISI distribution (ISI-D) [e.g. 7] or the Joint-ISI distribution (J-ISI-D) [5] conserves the ISI and ISI/J-ISI distributions, respectively. Spike-train shifting (ST-Shift) [6,7] moves the whole spike train, trial by trial, by a random amount, thereby only affecting the relation of spike trains to each other. Thus all of these implement different null-hypotheses, as summarized in the table below. It shows the non-/preservation (no/yes) of features in the various surrogates compared to the original data. We applied all surrogate methods (within SPADE) and compared their results using artificial, and experimental spike data simultaneously recorded in pre-/motor cortex of a macaque monkey performing a reach-to-grasp task [8]. We find that all methods besides UD lead to very similar results in terms of number of patterns and their composition. UD results in a much larger number of patterns, in particular if neurons have very high firing rates and exhibit regular spike trains. We conclude that the reduction in the spike count using UD increases the false positive rate for spike trains with CV<1 and/or high firing rates, the other methods are much less affected, the least spike train shifting. References:[1] Torre et al (2016) DOI: 10.1523/jneurosci.4375-15.2016[2] Quaglio et al (2017) DOI: 10.3389/fncom.2017.00041[3] Stella et al (2019) DOI: 10.1016/j.biosystems.2019.104022[4] Picado-Muiño et al (2013). DOI: 10.3389/fninf.2013.00009[5] Gerstein (2004)[6] Pipa et al (2008) DOI: 10.1007/s10827-007-0065-3[7] Louis et al (2010) DOI: 10.1007/978-1-4419-5675-0_17[8] Brochier et al (2018) DOI: 10.1038/sdata.2018.55[9] Pipa et al (2013)DOI: 10.1162/NECO_a_00432
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 2
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 3
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 4
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 5
700 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 1
|u fzj
700 1 _ |a Palm, Günther
|0 P:(DE-Juel1)172768
|b 2
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 3
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/885609/files/Poster.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/885609/files/Poster.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:885609
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21