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Introduction
Correlated activity between neurons is considered as a signa-
ture of the activation of a cell assembly [1,2]. To identify
active cell assemblies we developed a method to detect signif-
icant spatio-temporal spike patterns (STPs). SPADE
[3,4,5], identifies repeating ms-precise spike patterns across
neurons.

Schematized representation of four parallel spike trains, before and after

the identification of a spatio-temporal pattern. Adapted from [5].

Candidate pattern are detected by Frequent Itemset Mining [6]
after spike train discretization, or clipping. The method then
employs surrogate generation in order to construct the null
hypothesis of independence between spike trains. Candidate
patterns are evaluated for significance based on the occurrence
distributions in the surrogates.

Spike loss due to Uniform
Dithering
Surrogate data implement the null-hypothesis of independence
across neurons, and a classical choice is to apply uniform
dithering (UD), i.e. independent, uniformly distributed local
displacement of each spike. Important issues of UD are:

• it does not maintain the absolute refractory period

• destroys potentially existing ISI regularity

• leads to spike count reduction after clipping of the spike
train, especially for high firing rates. (Figure)
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Spike train reduction in an experimental session before and after

UD. Each dot represents a neuron.
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Illustration of the surrogate methods examined. Adapted from [8]

a) Uniform Dithering (UD) [7, 8]

b) Bin Shuffling (Bin-Shuff)

c) Spike Train Shifting (ST-Shift) [7,8]

d) Uniform dithering with Refractory Period (UD-RP)

e) Joint ISI-Dithering (JISI-D) [9]

f) ISI-Dithering (ISI-D)

Conclusions

We analyze experimental data and ad-hoc artificially generated indepedent data with six different surrogate tech-

niques, in order to evaluate their statistical performances when looking for spatio-temporal spike patterns. We

find:

• all surrogate techniques despite UD keep the spike counts at least approximately identical to the original data

after clipping

• the firing rate reduction after clipping of the surrogate spike train is the primary reason for FPs

• loosing the ISI/J-ISI property of the original spike train may create only a few FPs

•we observe a low number of FPs (below significance threshold) across surrogate techniques besides UD

•we detect the same patterns in experimental data across different surrogate techniques, evidencing the robustness

of our findings.

Results: Application of surrogate techniques on artificial
and experimental data
Our purpose is to verify and evaluate the statistical properties of the surrogates generated via the six methods
presented. We apply the six different surrogate techniques to artificial data modeled on two sessions of experimental data (Motor
cortex of a macaque monkey [10]), and compare the STPs resulting from the SPADE analysis. Finally, we apply the same analysis on
the two experimental sessions.

Characteristics of the artificial data:

• Same number of neurons as in experimental data

• Spike trains modeled by independent inhomoge-
neous point processes, with the same firing rate pro-
file of the original data

• Spike trains are modeled by Poisson process with
refractory period (PPR) [11] and Gamma process

•Refractory process for PPR estimated from the data
for each unit

• Shape factor of Gamma estimated from the average
CV of each unit.

Method/Feature UD Bin-Shuff ST-Shift UD-RP J-ISI-D ISI-D

Firing rate modulation approx. approx. yes approx. approx. approx.
Spike count no yes yes approx. approx. approx.

ISI no no yes no approx. approx.
J-ISI no no yes no approx. no

Refractory period no yes yes yes no no

Table summarizing the statistical properties conserved/not-conserved/approximately con-

served by the six surrogate techniques.

Comparison of statistics of the artificial data to the experimental data. In blue, orange and green, statistics of the original data, experimental data modeled by a Gamma and PPR

process, respectively. Description of the panels from left to right. First panel: modulation of firing rate across one concatenated spike train for a single neuron. Second panel: time resolved

average firing rate of a single neuron across trials of 500ms. Third panel: ISI distribution of a single unit. Fourth panel: Average coefficient of variation across trials for all units. Fifth panel:

Average refractory period across trials for all units.

In artificial data:

• In case of non-Poisson data, UD leads to a strong
reduction in spike count after clipping, causing a
large number of false positives (FPs)

•The other methods show a small number of FPs

•More patterns are detected when their intrinsic
regularity is included in the artificial data (Gamma
process). Fewer FPs for PPR process

•UDRP shows a higher number of FPs in the case
of Gamma process (for neurons with high firing
rate).

In experimental data:

•We detect most patterns (ca. 200 across two ses-
sions) by using UD (likely to be FPs)

•Higher amount of patterns are found during the
start and the movement period of the trials for all
surrogate techniques besides UD

• Same patterns detected across ST-Shift, UDRP,
J-ISI-D, ISI-D. Patternn sizes (number of spikes)
ranging from 2 to 5. Pattern occurrences ranging
from 11 to 386 (depending on size).
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Top/bottom panel: Artificial data modeled by

PPR/gamma process respectively.

Histogram of number of patterns detected

per epoch of the experiment. Different colors

represent different behavioral conditions (PG/SG:

Precision/Side Grip; HF/LF: High/Low force)
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